Math, asked by aayushlilhare111, 1 month ago

4. Find the locus of the point whose distance from the point(1, -2) is double the distance from the point (-3,5).​

Answers

Answered by MysticSohamS
3

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: let \: the \\ locus \: of \: points \: (1, - 2) \:  \: and \:  \: ( - 3,5) \: be \:  \\ x \: and \: y \:  \\  \\ we \: know \: that \\ distance \: formula =   \\ \sqrt{(x2 - x1) {}^{2}  + (y2 - y1) {}^{2} }  \\  \\ therefore \\  \: according \: to \: first \: condition \\  \\  \sqrt{(x - 1) {}^{2}  + (y - ( - 2)) {}^{2} }  = 2.( \sqrt{(x - ( - 3)) {}^{2}  + (y - 5) {}^{2} }  \\  \\ squaring \: both \: sides \\ we \: have \: then \\  \\ (x - 1) {}^{2}  + (y + 2) {}^{2}  = 4((x + 3) {}^{2}  +( y - 5) {}^{2}  \\  \\ x {}^{2}  + 1 - 2x + y {}^{2}  + 4 + 4y = 4(x {}^{2}  + 9 + 6x + y { }^{2}  + 25 - 10y) \\  \\ x {}^{2}  + y {}^{2}  - 2x + 4y + 5 = 4( {x}^{2}  + y {}^{2}  + 6x - 10y + 34) \\  \\ x {}^{2}  + y {}^{2}  - 2x + 4y + 5 = 4 {x}^{2}  + 4 {y}^{2}  + 24x - 40y + 136 \\  \\ (4x {}^{2}  - x {}^{2} ) + (4y {}^{2}  - y {}^{2} ) + (24x  + 2x)  - 40y - 4y + 136 - 5 \\  \\ 3x {}^{2}  + 3y {}^{2}  + 26x - 44y + 131 = 0

Similar questions