Math, asked by ghbhklavhi, 5 months ago

4. Find the point on the y-axis which is equidistant from the points (5, -2) and (-3, 2).​

Answers

Answered by ShírIey
16

Let the given points be P(5, -2) and Q(-3,2) is equidistant from a point R.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

Given that,

  • The points are equidistant from y - axis.

⠀⠀⠀⠀

\therefore It's y - coordinate will be 0.

Therefore, Coordinates of point R is (y,0).

⠀⠀⠀⠀\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

  • Point R is equidistant from the points P & Q.

⠀⠀⠀

\dag\;{\underline{\frak{Using\:Distance\:Formula,}}}\\ \\

⠀⠀⠀

\star\;{\boxed{\sf{\pink{d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}}}}\\ \\

⠀⠀⠀

Therefore,

⠀⠀⠀

:\implies\sf\sqrt{\Big(0 -5 \Big)^2 + \Big(y + 2 \Big)^2}  = \sqrt{\Big(0 + 3 \Big)^2 + \Big(y - 2 \Big)^2} \\\\\\:\implies\sf 25 + y^2 + 4y + 4 = 9 + y^2 - 4y + 4 \\\\\\:\implies\sf  4y + 29 = -4y + 13\\\\\\:\implies\sf  4y + 4y = 13 - 29\\\\\\:\implies\sf    y = \cancel\dfrac{-16}{\:8}\\\\\\:\implies{\underline{\boxed{\frak{\purple{y = -2}}}}}

⠀⠀⠀

\therefore\:{\underline{\sf{Hence,\:Required\:point\:is\: {\textsf{\textbf{(-2,0)}}}.}}}

Answered by Anonymous
12

\; \; \; \; \; \; \; \; \;{\large{\bold{\sf{\underbrace{\underline{Let's \; understand \; the \; question \; 1^{st}}}}}}}

This question says that we have to find the point on the y-axis which is equidistant from the points (5, -2) and (-3, 2)

{\large{\bold{\sf{\underline{Given \; that}}}}}

The y-axis which is equidistant from the points (5, -2) and (-3, 2).

{\large{\bold{\sf{\underline{To \; find}}}}}

Point on which the y-axis is equidistant from the points (5, -2) and (-3, 2).

{\large{\bold{\sf{\underline{Solution}}}}}

(-2,0) is the point on which the y-axis is equidistant from the points (5, -2) and (-3, 2).

{\large{\bold{\sf{\underline{Assumption}}}}}

Let A(5,-2) and B(-3,2) is equidistant from the point C(y,0)

Note : It's because C(y,0) that time it is constant.

{\large{\bold{\sf{\underline{Using \; concepts}}}}}

Distance formula.

{\large{\bold{\sf{\underline{Using \; formula}}}}}

{\bold{\sf{\green{d = \sqrt{(x_{2}  - x_{1})^{2}  +( y _{2}  - y_{1})^{2}}}}}}

{\large{\bold{\sf{\underline{Full \; Solution}}}}}

{\bullet} {\bold{\sf{d = \sqrt{(x_{2}  - x_{1})^{2}  +( y _{2}  - y_{1})^{2}}}}}

{\bullet} {\bold{\sf{d =   \sqrt{(0 - 5)^{2} + (y +  {2)}^{2} =}}}} {\bold{\sf{d =   \sqrt{(0 +3)^{2} + (y - {2)}^{2}}}}}

{\bullet} 25 + y² + 4y + 4 = 9 + y² - 4y + 4

{\bullet} 4y + 29 = -4y + 13

{\bullet} 4y + 4y = 13 - 29

{\bullet} 8y = -16

{\bullet} y = {\sf{\dfrac{-16}{8}}}

{\bullet} y = (-2,0)

{\purple{\frak{Henceforth, \; (-2,0) \; is \; the \; point \; which \; is\; equidistant \; from \; given \; points}}}

Similar questions