4. Find the product of (1/2x³) (-10x) (1/5x²)
and verify the result for x = 1.
Answers
Answer:
-1
Step-by-step explanation:
21x3)(−10x)(51x2)=−x6
Step-by-step explanation:
Given : Expression (\frac{1}{2}x^3)(-10x)(\frac{1}{5}x^2)(21x3)(−10x)(51x2)
To find : The product of the expression ?
Solution :
Expression (\frac{1}{2}x^3)(-10x)(\frac{1}{5}x^2)(21x3)(−10x)(51x2)
Product of first two terms,
(\frac{1}{2}x^3)(-10x)(\frac{1}{5}x^2)=(-5x^4)(\frac{1}{5}x^2)(21x3)(−10x)(51x2)=(−5x4)(51x2)
Product of rest terms,
(\frac{1}{2}x^3)(-10x)(\frac{1}{5}x^2)=-x^6(21x3)(−10x)(51x2)=−x6
Check for x=1,
Take LHS,
LHS=(\frac{1}{2}x^3)(-10x)(\frac{1}{5}x^2)LHS=(21x3)(−10x)(51x2)
LHS=(\frac{1}{2}(1)^3)(-10(1))(\frac{1}{5}(1)^2)LHS=(21(1)3)(−10(1))(51(1)2)
LHS=\frac{1}{2}\times -10\times \frac{1}{5}LHS=21×−10×51
LHS=-1LHS=−1
Taking RHS,
RHS=-x^6RHS=−x6
RHS=-(1)^6RHS=−(1)6
RHS=-1RHS=−1
LHS=RHS