Math, asked by ujjwal133726, 5 months ago

4. Find the product of (1/2x³) (-10x) (1/5x²)
and verify the result for x = 1.

Answers

Answered by ravibharathi22
13

Answer:

-1

Step-by-step explanation:

Attachments:
Answered by mundadasachin
3

21x3)(−10x)(51x2)=−x6

Step-by-step explanation:

Given : Expression (\frac{1}{2}x^3)(-10x)(\frac{1}{5}x^2)(21x3)(−10x)(51x2)

To find : The product of the expression ?

Solution :

Expression (\frac{1}{2}x^3)(-10x)(\frac{1}{5}x^2)(21x3)(−10x)(51x2)

Product of first two terms,

(\frac{1}{2}x^3)(-10x)(\frac{1}{5}x^2)=(-5x^4)(\frac{1}{5}x^2)(21x3)(−10x)(51x2)=(−5x4)(51x2)

Product of rest terms,

(\frac{1}{2}x^3)(-10x)(\frac{1}{5}x^2)=-x^6(21x3)(−10x)(51x2)=−x6

Check for x=1,

Take LHS,

LHS=(\frac{1}{2}x^3)(-10x)(\frac{1}{5}x^2)LHS=(21x3)(−10x)(51x2)

LHS=(\frac{1}{2}(1)^3)(-10(1))(\frac{1}{5}(1)^2)LHS=(21(1)3)(−10(1))(51(1)2)

LHS=\frac{1}{2}\times -10\times \frac{1}{5}LHS=21×−10×51

LHS=-1LHS=−1

Taking RHS,

RHS=-x^6RHS=−x6

RHS=-(1)^6RHS=−(1)6

RHS=-1RHS=−1

LHS=RHS

Similar questions