Math, asked by rahulkr57, 9 months ago

4. Find the rate of compound interest on Rs 4,000 so that it can amount to Rs 4,630.50 in 3 years.​

Answers

Answered by tahseen619
8

5%

Step-by-step explanation:

Given:

Principal = Rs 4000

Amount = Rs 4630.50

Time = 3 yr

To find:

Rate of compound Interest

Solution:

let, The rate of interest be x % p.a

Using formula,

\text{A} = P{(1+\dfrac{r}{100})}^{t} \\  \\ 4630.50 = 4000 {(1 +  \frac{x}{100} )}^{3} \\  \\  \frac{4630.5}{4000} =  {( 1 +  \frac{x}{100}) }^{3} \\  \\  \frac{ \cancel{46305}}{\cancel{40000}} =   {( 1 +  \frac{x}{100}) }^{3} \\  \\ \frac{9261}{8000}  =   {( 1 +  \frac{x}{100}) }^{3} \\  \\  {( \frac{21}{20}) }^{3}   = {( 1 +  \frac{x}{100}) }^{3} \\  \\  \frac{21}{20} = 1 +  \frac{x}{100}  \\  \\  \frac{21}{20} - 1 =  \frac{x}{100}   \\  \\  \frac{21 - 20}{\cancel{20}} =  \frac{x}{\cancel{100}} \\  \\ 1 =  \frac{x}{5} \\  \\ x = 5

Therefore, The required rate of interest is 5% per annum.

{\underline{\text{Formula Of Interests}}}

\boxed{\text{S.I}=\dfrac{Prt}{100}}

Where,

P = Principal

r = rate of interest

t = time

S.I = Simple Interest

Compound Interest Amount

 \boxed{\text{A} = P{(1+\dfrac{r}{100})}^{t}}

Similar questions