Math, asked by sharang13, 6 months ago

4.
Find the rate of compound interest per annum at
which Rs 12,500 will amount to Rs 15,680 in 2
years.​

Answers

Answered by Anonymous
12

\boxed{\texttt{\fcolorbox{Red}{aqua}{Hey Mate}}}

Here is your answer

P = Rs 12500

A = Rs 15680

R = r % let

T = 2 years , n = 2

As we know the formula

A = P (1+r/100)^n

\begin{gathered}15680 = 12500 \times (1 + \frac{r}{100} ) {}^{2} \\ \frac{15680}{12500} = ( \frac{100 + r}{100} ) {}^{2} \\ \frac{784}{625} = ( \frac{100 + r}{100} ) {}^{2} \\ ( \frac{28}{25} ) {}^{2} = ( \frac{100 + r}{100} ) {}^{2} \\ \frac{28}{25} = \frac{100 + r}{100} \\ 28 \times 100 = 25 \times 100 + 25r \\ 25r = 2800 - 2500 \\ 25r = 300 \\ r \frac{300}{25} \\ r = 12\%\end{gathered}

\large{\red{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{\underline{Hope\:it\:helps\: you}}}}}}}}}}}}}}}

Answered by Anonymous
7

\huge\boxed{\underline{\sf{\red{a}\green{n}\pink{s}\orange{w}\blue{e}\pink{r}}}}

Here is your answer

P = Rs 12500

A = Rs 15680

R = r % let

T = 2 years , n = 2

As we know the formula

A = P (1+r/100)^n

\begin{gathered}\begin{gathered}15680 = 12500 \times (1 + \frac{r}{100} ) {}^{2} \\ \frac{15680}{12500} = ( \frac{100 + r}{100} ) {}^{2} \\ \frac{784}{625} = ( \frac{100 + r}{100} ) {}^{2} \\ ( \frac{28}{25} ) {}^{2} = ( \frac{100 + r}{100} ) {}^{2} \\ \frac{28}{25} = \frac{100 + r}{100} \\ 28 \times 100 = 25 \times 100 + 25r \\ 25r = 2800 - 2500 \\ 25r = 300 \\ r \frac{300}{25} \\ r = 12\%\end{gathered} \end{gathered}

Similar questions