Math, asked by manjula72babu, 1 month ago

4. Find the ratio in which the line segment joining the points
(4,-3) and (8,5) is divided by (7,3).​

Answers

Answered by ItzWhiteStorm
67

Question:

  • Find the ratio in which the line segments joining the points (4,-3) and (8,5) is divided by (7,3).

Solution:

To find: Ratio of the line segments

Step-by-step explanation:

Let A(4,-3) and B(8,5) be points and the point at which it is divided be C(7,3).

➜ AC² = (7 - 4)² + (3 + 3)²

➜ AC² = (3)² + (6)²

➜ AC² = 9 + 36

AC² = 45

➜ BC² = (7 - 8)² + (3 - 5)²

➜ BC² = (-1)² + (-2)²

➜ BC² = 1 + 4

BC² = 5

  • Dividing the values of AC/BC, weget:

➜ AC/BC = 45/5

AC/BC = 9/1

  • The ratio in which the line segment is divided is 9:1.

______________________

Answered by MostlyMad
93

\mathfrak{{\pmb{{\underline{To~find}}:}}}

  • The ratio in which the line segment joining the points \sf{\pmb{(4,-3)}} and \sf{\pmb{(8,5)}} is divided by \sf{\pmb{(7,3)}}

\mathfrak{{\pmb{{\underline{Solution}}:}}}

Let the points be :–

  • A(4, 3)
  • B(8, 5)
  • C(7, 3)

Here, in line segment AB ,

  •  \sf x_{1} = { \bf{4}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x_{2} = { \bf{8}}
  •  \sf y_{1} =   {\bf{ - 3}}\:  \:  \:  \:  \:  \:  \:  \:  \:  \: y_{2} =  {\bf{5}}

Using section formula, we get :–

 \sf x =  \dfrac{m_{1} \:x_{2}  + m_{2} \: x_{1}}{m_{1} + m_{2}}  \:  \:  \\  \\  \sf \implies 7 =  \dfrac{m_{1}  \times 8 + m_{2} \times 4}{m_{1} + m_{2}} \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf \implies  \frac{8m_{1} + 4m_{2}}{m_{1} + m_{2}}  = 7  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \sf \implies 8m_{1} + 4m_{2} = 7(m_{1} + m_{2}) \\  \\  \sf \implies 8m_{1} + 4m_{2} = 7m_{1} + 7m_{2}  \: \\  \\  \sf \implies 8m_{1}  - 7m_{1}  =  7m_{2}  - 4m_{2}  \: \\  \\  \sf \implies 1m_{1} = 3m_{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \\  \\  \sf \implies  \frac{1}{3}  =  \frac{m_{2}}{m_{1}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf \implies \frac{m_{1}}{m_{2}} =  \frac{3}{1}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \sf \therefore  \blue{ \underline{ \boxed{ \sf{ \pmb{m_{1} = 3 \:  \:  \:  \:  \: m_{2} =  1}}}}} \:  \:  \:  \:  \:  \:  \:  \:

\therefore\mathfrak{{\pmb{{\underline{Required~answer}}:}}}

The ratio is :-

  • \sf{\pmb{m_{1}:m_{2}=3:1}}

\sf{}

  • Refer the attachment for the figure
Attachments:
Similar questions