Math, asked by belinda098, 2 days ago

4. Find the sum of the following using the colum (a) a² + 2ab + b², a? - 2ab - bº, a? + b2​

Attachments:

Answers

Answered by krishna98980
0
Please mark me as Brainliest
Answered by ZaraAntisera
1

Answer:

\mathrm{\left[\begin{array}{ccc}a&0&0\\0&a&0\\0&0&a\end{array}\right] \times X = \left[\begin{array}{ccc}a^2&2ab&b^2\\a&2ab&a\\a&b&2\end{array}\right]}

Step-by-step explanation:

\left[\begin{array}{ccc}a_1_1&a_1_2&a_1_3\\a_2_1&a_2_2&a_2_3\\a_3_1&a_3_2&a_3_3\end{array}\right] = \mathrm{ +a_1_1 \times a_2_2\times a_3_3}

                              \mathrm{ +a_1_2 \times a_2_3\times a_3_1}

                             \mathrm{ +a_1_3 \times a_2_1\times a_3_2}

                             \mathrm{ -a_1_3 \times a_2_2\times a_3_1}

                             \mathrm{ -a_1_1 \times a_2_3\times a_3_2}

                           \mathrm{ -a_1_2 \times a_2_1\times a_3_3}

\mathrm{\left[\begin{array}{ccc}a&0&0\\0&a&0\\0&0&a\end{array}\right] aaa+0\times0\times0+0\times0\times0-0a\times0-0\times0\times a-a\times0\times0 = a^3}

\mathrm{\left[\begin{array}{ccc}a&0&0\\0&a&0\\0&0&a\end{array}\right] ^{-1}}

\frac{1}{a^3} \times \mathrm{\left[\begin{array}{ccc}a^2&0&0\\0&a^2&0\\0&0&a^2\end{array}\right] } = \mathrm{\left[\begin{array}{ccc}\frac{1}{a} &0&0\\0&\frac{1}{a} &0\\0&0&\frac{1}{a} \end{array}\right] }

= \mathrm{\left[\begin{array}{ccc}a&2b&\frac{b^2}{a} \\\\1&2b&\frac{b}{a} \\\\1&\frac{b}{a} &\frac{2}{a} \end{array}\right]}

Similar questions