Physics, asked by hemendrasingh88, 8 months ago

4. Find the unit vector perpendicular to both
vectors A=21- 2j+2k and B = 31- 2j+4K *
(4 Points)
-2i+j-2k /3.45
-2i+j-4k /2.45
x
-2i-j+k/2.45
0 -2i+3j+k /3.45​

Answers

Answered by hrn21agmailcom
0

Answer:

1/√6 [ -2i - j +k ]

Explanation:

unit vector : A × B / |A × B|

A × B = | ( i j k, 21- 2j+2k, 31- 2j+4K ) | a 3×3 matrix

A × B = i (-8+4) - j ( 8-6) + k ( -4+6)

A × B = -4i - 2j +2k

|A × B| = √ [ (-4)^2 + (-2)^2 + 2^2 ]

|A × B| = √24 = 2√6

unit vector = [ -4i - 2j +2k ] / 2√6

unit vector = 1/√6 [ -2i - j +k ]

Answered by Anonymous
134

Correct Question -

Find the unit vector perpendicular to both vector

\vec{A} = 2\hat{\imath} + 2\hat{\jmath} + 2\hat{k}

\vec{B} = 3\hat{\imath} + 2\hat{\jmath} + 4\hat{k}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Solution

The cross product of two vectors yields a vector perpendicular to both the vector. So if \vec{C} is perpendicular to \vec{A} and \vec{B} then

\vec { C } = \vec{A} \times \vec { B}

━━━━━━━━━━━━━━━━━━━━━━━━━━

\vec{A} = 2\hat{\imath} + 2\hat{\jmath} + 2\hat{k}

\longrightarrowA_1 = 2

\longrightarrowA_2 = 2

\longrightarrowA_3 = 2

━━━━━━━━━━━━━━━━━━━━━━━━━━

\vec{B} = 3\hat{\imath} + 2\hat{\jmath} + 4\hat{k}

\longrightarrow B_1 = 3

\longrightarrowB_2 = 2

\longrightarrowB_3 = 4

━━━━━━━━━━━━━━━━━━━━━━━━━━

\vec { C } = ( A_2B_3 - B_2A_3 ) \hat{\imath} -  ( A_1B_3 - B_1A_3 ) \hat{\jmath}  +  ( A_1B_2 - B_1A_2) \hat{k}

Putting the values -

 \vec { C } = (2 \times 4 - 2 \times 2) \hat{\imath}-( 2 \times 4 - 3 \times 2) \hat{\jmath}+ (2 \times 2 - 3 \times 2)\hat{k}

\longrightarrow = 4\hat{\imath} - 2 \hat{\jmath}- 2\hat{k}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Unit vector in direction of C =\frac{\vec{C}}{ |\vec{C}| }

━━━━━━━━━━━━━━━━━━━━━━━━━━

\longrightarrow|\vec{C}| =  \sqrt{ {4}^{2} +  {2}^{2}  + 2 {}^{2}  }  = \sqrt{24}

\longrightarrow |\vec{C}| =  2\sqrt{6}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Unit vector =  \frac{4\hat{\imath} - 2 \hat{\jmath}- 2\hat{k}}{2 \sqrt{6} }

\longrightarrow= \frac{2\hat{\imath} -  \hat{\jmath}- \hat{k}}{ 2.45 }

━━━━━━━━━━━━━━━━━━━━━━━━━━

Thanks

Similar questions