Math, asked by Rudranil420, 10 months ago

4. Find the value of tan9°tan27°tan60°tan63°tan81° (2)
1) √2
2) 3
3) √3​

Answers

Answered by baladeb2005
2

Answer:

√3 is your answer

Step-by-step explanation:

mark me as brainliest

Attachments:
Answered by BrainlyPopularman
5

TO FIND :

Value of tan(9°)tan(27°)tan(60°)tan(63°)tan(81°) = ?

SOLUTION:

▪︎ Let suppose that –

 \\ \implies \sf y =  \tan( {9}^{ \circ} ) \tan( {27}^{ \circ}) \tan( {60}^{ \circ} ) \tan( {63}^{ \circ}) \tan( {81}^{ \circ} )  \\

• We know that –

 \\ \sf \dashrightarrow \tan( \theta)  =  \cot( {90}^{ \circ}  -  \theta)  \\

 \\ \implies \sf y =  { \underbrace{ \sf \: \tan( {9}^{ \circ} ) \tan( {81}^{ \circ})}} \tan( {60}^{ \circ} ){ \underbrace{ \sf \tan( {63}^{ \circ}) \tan( {27}^{ \circ} )}}  \\

 \\ \implies \sf y =  { \underbrace{ \sf \: \tan( {9}^{ \circ} ) \cot( {90}^{ \circ} - {81}^{ \circ})}} \tan( {60}^{ \circ} ){ \underbrace{ \sf \tan( {63}^{ \circ}) \cot( {90}^{ \circ}  -  {27}^{ \circ} )}}  \\

 \\ \implies \sf y =  { \underbrace{ \sf \: \tan( {9}^{ \circ} ) \cot( {9}^{ \circ})}} \tan( {60}^{ \circ} ){ \underbrace{ \sf \tan( {63}^{ \circ}) \cot( {63}^{ \circ}}}  \\

• We also know that –

 \\ \dashrightarrow \sf \: \tan( \theta) =  \dfrac{1}{ \cot( \theta)} \\

 \\ \implies \sf y =  \: \tan( {9}^{ \circ} ) \times  \dfrac{1}{ \tan( {9}^{ \circ})}  \times \tan( {60}^{ \circ} ) \times \tan( {63}^{ \circ})  \times  \dfrac{1}{ \tan( {63}^{ \circ}} \\

 \\ \implies \sf y = \tan( {60}^{ \circ} ) \\

 \\ \implies  \large{ \boxed{ \sf y =  \sqrt{3} }} \\

Hence , Option (3) is correct.

Similar questions