Math, asked by aadyakumari8079, 5 months ago

4. Find the value of
5x  ^{2}  - 3x + 7
when x =
 \frac{1}{2}

Answers

Answered by itscandycrush
20

Correct Question:-

Find the value of 5x ^{2} - 3x + 7 when x =  \frac{1}{2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Answer:-

{\bf{(5×{\frac{1}{2}}^{2}) - (3×\frac{1}{2}) + 7}}

{\bf{\implies( 5 × \frac{1}{4} )-(\frac{3}{2}) +7}}

{\bf{\implies( \frac{5-6}{4})+7}}

{\bf{\implies \frac{-1+28}{4}}}

{\bf{\implies 6\frac{1}{4}}}

Answered by cutie08
0

 \huge \star \; \bf \underbrace {ANSWER} \: \star

Given :

 \sf {p(x) \: = \: 5x^{2} - 3x + 7}

 \sf {x \: = \: \frac{1}{2}}

To Find :

 \textsf {The value}

Solution :

 \sf {Put \: \; x \; = \; \frac{1}{2} \: \; in \: \; 5x^{2} - 3x + 7}

 \sf {5x^{2} - 3x + 7}

 \sf {= \: 5 (\frac{1}{2})^{2} - 3 (\frac{1}{2}) + 7}

 \sf {= \: 5 × \frac{1}{4} - 3 × \frac{1}{2} + 7}

 \sf {= \: \frac{5}{4} - \frac{3}{2} + 7}

 \sf {= \: \frac {5 - 6 + 28}{4}}

 \sf {= \: \frac {27}{4}}

 \implies \sf {\underline {Hence, \: the \: answer \: is \: \frac{27}{4}.}}

____________________☆

Similar questions