Math, asked by taradoni969, 5 months ago

4. Find the zeroes of quadratic polynomial x + 7 + 10.
x {}^{2}  + 7x + 10

Answers

Answered by SuitableBoy
49

{\huge{\underline{\underline{\bf{\ddot{\smile}{Question}}}}}}

Find the zeroes of the Quadratic Polynomial :

x² + 7x + 10 = 0

{\huge{\underline{\underline{\bf{Answer\checkmark}}}}}

Concept :

• We can solve these types of questions using two methods -

  1. Middle Term Splitting .
  2. Using Quadratic Formula .

Zero of a polynomial - It is that value of the variable , which makes the whole Polynomial equal to zero (0) , it is also called root of the Polynomial .

• Since this Polynomial is Quadratic (2 degree) i.e. highest power of the Polynomial is 2 , so , it will have two roots or zeroes .

Solution :

1st Method -

Splitting the middle term .

 \rm \:  {x}^{2}  + 7x  +  10 = 0

 \mapsto \rm \:  {x}^{2}  + 2x + 5x + 10 = 0

 \mapsto \rm \: x(x + 2) + 5(x + 2) = 0

 \mapsto \rm \: (x + 5)(x + 2) = 0

so ,

either

  \sf \: x + 5 = 0 \\  \implies  \boxed{\tt \: x =  - 5}

or ,

 \tt \: x + 2 = 0 \\  \implies \boxed{ \tt \: x =  - 2}

So ,

Zeroes : (-5) and (-2)

 \\

 \\

2nd Method -

x² + 7x + 10 = 0

here ,

a = 1

b = 7

c = 10

So , using Quadratic Formula ,

 \boxed{ \rm \: roots =  \frac{ - b \pm \:  \sqrt{ {b}^{2} - 4ac } }{2a} }

 \mapsto \rm \: roots =  \frac{ - 7 \pm \:  \sqrt{ {7}^{2}  - 4 \times 1 \times 10} }{2 \times 1}  \\

 \mapsto \rm \: roots =  \frac{ - 7 \pm \:  \sqrt{49 - 40} }{2}  \\

 \mapsto \rm \: roots =  \frac{ - 7 \pm \:  \sqrt{9} }{2}  \\

 \mapsto \rm \: roots \:  =  \frac{ - 7  \pm \: 3}{2}  \\

so ,

 \rm \mapsto \: first \: root =  \frac{ - 7 - 3}{2}  =  \frac{ - 10}{2}  \\  \boxed{ \rm \: first \: root =  - 5}

and

 \mapsto \rm \: second \: root   =  \frac{ - 7 + 3}{2}   =  \frac{ - 4}{2}  \\  \boxed{ \rm \: second \: root =  - 2}

_______________________

So ,

Zeroes = -2 and -5

Answered by LilBabe
103

Answer:

To find: zeroes of quadratic polynomial x²+7x+10.

By splitting the middle term:-

x² + 7x + 10 = 0

=> x² + (5+2)x + 10 = 0

=> x² + 5x + 2x + 10 = 0

=> x(x+5) + 2(x+5) = 0

=> (x+2) (x+5) = 0

Either,

(x+2) = 0 or (x+5)= 0

x = -2 or x = -5

Therefore, the zeroes of the polynomial (x²+7x+10) are (-5 )and (-2)

By quadratic formula:-

x²+7x+10=0

Let a=1, b=7and c=10

 \bf{x =  - 7 \pm \frac{ \sqrt{49 - 40}}{2}}

 \bf{x =  - 7\pm \frac{ \sqrt{9} }{2}}

 \bf{x =  - 7 \pm \frac{3}{2}}

Now,

 \bf{x = - 7 -  \frac{ 3}{2}} \\  \bf{x =  \frac{ - 10}{2}} \\  \bf{x =  - 5}

 \bf{x =  - 7 +  \frac{3}{2}} \\  \bf{x =  \frac{ - 4}{2}} \\  \bf{x =  - 2}

Here too, the zeroes of the polynomial x²+7x+10 is (-5)and (-2)

Similar questions