Math, asked by Tashifkhan005, 7 months ago

4. Given 15 cot A = 8, find sin A and sec A.​

Answers

Answered by omsingh020304
1

Answer:

sin A =p/h=15x/17x=15/17

sec A.=h/b=17x/8x=17/8

Step-by-step explanation:

 15 cot A = 8

cot A =8/15=b/p

base=8x     perpendicular=15x

hypotenuse=\sqrt{h^{2}+b^{2} }

hypotenuse=\sqrt{(15x)^{2}+(8x)^{2}  }

hypotenuse=17x

sin A =p/h=15x/17x=15/17

sec A.=h/b=17x/8x=17/8

Answered by Disha976
4

Given that,

 \rm { \qquad • 15 cot \: A = 8 }

_________

We have to find,

 \rm { \qquad • sin \: A \: and \: sec \: A }

_________

Solution,

If  \rm {15 cot \: A = 8 } , then  \rm { cot \: A = \dfrac{8}{15} }

We know that ,

 \rm { \qquad • cot \: A = \dfrac{Base}{Perpendicular}}

Hence,

 \rm { \qquad •  Base = 8 }

 \rm { \qquad •  Perpendicular = 15 }

____________

Applying pythagoras property-

 \rm\red { {H}^{2} = {B}^{2}+{P}^{2} }

 \rm\leadsto { {H}^{2} = {8}^{2}+{15}^{2} }

 \rm\leadsto { {H}^{2} = 64+ 225}

 \rm\leadsto { {H }^{2} = 289}

 \leadsto\rm\blue { H = \sqrt{289} = 17}

_____________

 \rm { \qquad •  Base = 8 }

 \rm { \qquad •  Perpendicular = 15 }

 \rm { \qquad •  Hypotenuse = 17 }

 \qquad

 \rm\red { \leadsto sin \: A = \dfrac{ Perpendicular}{Hypotenuse} =\dfrac{15}{17} }

 \qquad

 \rm\red { \leadsto sec \: A = \dfrac{ Hypotenuse}{Base} =\dfrac{17}{8} }

Attachments:
Similar questions