Math, asked by priyankabalivada30, 2 months ago

4) I = (5x+2)dx/(x²+4)​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \int \limits ^{2} _{0} \frac{5x + 2}{ {x}^{2}  + 4} dx \\

  =  \frac{5}{2} \int \limits ^{2} _{0} \frac{2x }{ {x}^{2}  + 4} dx +  2\int \limits ^{2} _{0} \frac{dx}{ {x}^{2}  + 4} \\

 =  \frac{5}{2}  [ ln( {x}^{2} + 4 ) ] ^{2}_{0} + 2 [\tan ^{  - 1} ( \frac{x}{2} ) ] ^{2} _{0} \\

 =  \frac{5}{2} ( ln(8)  -  ln(4) ) + 2(  \tan^{ - 1} (1)  - \tan^{ - 1} (0)) \\

 =  \frac{5}{2}  ln(2)  + \frac{\pi}{2}  \\

Similar questions