Math, asked by sharshit1908gmailcom, 1 month ago

4. If a+1/a = 3, find (i) a^2 + 1/a^2 (ii) a^4 +1/a^4​

Answers

Answered by hfhviyfd
1

Answer:

1st》7 , 2nd 》47

Step-by-step explanation:

QUESTION 1:

a +  \frac{1}{a}  = 3 \:  \: find \:  \:  {a}^{2}   +  \frac{1}{ {a}^{2} }  \\

SOLUTION:

( {a +  \frac{1}{a} })^{2}  =  {3}^{2}  \:  \:  \:  \:  \:  \:  \:  \: ((a +  {b})^{2}  =  {a}^{2}  + 2ab +  {b}^{2} ) \\  =  {a}^{2}  + 2a \frac{1}{a}  +  { \frac{1}{a} }^{2}  = 9 \\  {a}^{2}  + 2 +  { \frac{1}{a} }^{2}  = 9 \\  {a}^{2}  +  { \frac{1}{a} }^{2}  = 9 - 2 \\  {a}^{2}  +  { \frac{1}{a} }^{2}  = 7

QUESTION 2

find \:  {a}^{4}   +  { \frac{1}{a} }^{4}

solution :

 {a}^{2}  +  { \frac{1}{a} }^{2}  = 7 \\ ( { {a}^{2} +  \frac{1}{ {a}^{2} }  })^{2}  \:  \:  \: using \: same \: identity \\  { {a}^{2} }^{2}  + 2 {a}^{2}  { \frac{1}{a} }^{2}  +  { { \frac{1}{a} }^{2} }^{2}  =  {7}^{2}  \\  {a}^{4}   + 2 +  { \frac{1}{a} }^{4}  =  {7}^{2}  \\  {a}^{4}  +   { \frac{1}{a} }^{4}  = 49 - 2 \\  {a}^{4}  +   { \frac{1}{a} }^{4}   = 47

Similar questions