Math, asked by omshubham589, 9 months ago

4. If a, b, c, d are in continued proportion, prove
that:
(4 (6-c)² + (c-a)² + (d-6)² = (a - a)? plz give me answer fast

Answers

Answered by mayajakhar79
0

Answer:

&lt;!DOCTYPE html&gt;</p><p></p><p>&lt;html&gt;</p><p></p><p>&lt;head&gt;</p><p></p><p>&lt;title&gt;SVG Text Animation&lt;/title&gt;</p><p></p><p>&lt;style&gt;</p><p></p><p>body{</p><p></p><p>margin:0;</p><p></p><p>padding:0;</p><p></p><p>background-color:#444;</p><p></p><p>}</p><p></p><p>.a{</p><p></p><p>stroke-dasharray: 2000;</p><p></p><p>stroke-dashoffset: 0;</p><p></p><p>animation: dash 20s linear;</p><p></p><p>text-shadow:0px 0px 20px red;</p><p></p><p>}</p><p></p><p>@keyframes dash{</p><p></p><p>from{stroke-dashoffset: 2000;}</p><p></p><p>to{stroke-dashoffset: 0;}</p><p></p><p>0%{fill: none;}</p><p></p><p>30%{fill:lime ;}</p><p></p><p>from{stroke: gold}</p><p></p><p>to{stroke: ;}</p><p></p><p>}</p><p></p><p>&lt;/style&gt;</p><p></p><p>&lt;/head&gt;</p><p></p><p>&lt;body&gt;</p><p></p><p>&lt;svg width="100%" height="500" &gt;</p><p></p><p>&lt;text class="a" x="5px" y="200"</p><p></p><p>style=" font-size: 60;</p><p></p><p>stroke:#f00;</p><p></p><p>fill: #red;</p><p></p><p>"&gt;</p><p></p><p>Answer</p><p></p><p>&lt;/text&gt;</p><p></p><p>&lt;/svg&gt;</p><p></p><p>&lt;/body&gt;</p><p></p><p>&lt;/html&gt;

(i) Since a, b, c, d are in continued proportion then

a/b = b/c = c/d = k

⇒ a = bk, b = ck , c = dk

⇒ a = ck2

⇒ a = dk3, b = dk2 and c = dk

(ii) L.H.S. = (d2k6 + d2k4 + d2k2)(d2k4 + d2k2 + d2)

= d2k2 (k4 + k2 + 1).d2 (k4 + k2 + 1)

= d4k2(k4 + k2 + 1)2

R.H.S. = (ab + bc + cd)2

= (dk3.dk2 + dk2.dk + dk.d)2

= d4.k2(k4 + k2 + 1)2

L.H.S. = R.H.S.

Hence proved.

Answered by Anonymous
0

(i) Since a, b, c, d are in continued proportion then

a/b = b/c = c/d = k

⇒ a = bk, b = ck , c = dk

⇒ a = ck2

⇒ a = dk3, b = dk2 and c = dk

(ii) L.H.S. = (d2k6 + d2k4 + d2k2)(d2k4 + d2k2 + d2)

= d2k2 (k4 + k2 + 1).d2 (k4 + k2 + 1)

= d4k2(k4 + k2 + 1)2

R.H.S. = (ab + bc + cd)2

= (dk3.dk2 + dk2.dk + dk.d)2

= d4.k2(k4 + k2 + 1)2

L.H.S. = R.H.S.

Hence proved.

Similar questions