Math, asked by Paalvi, 1 year ago

4. If α and β are the zeros of the quadratic polynomial f(x) = x^2 - x - 4, find the value of
1/α+1/β-αβ
NO SPAM PLZZ..... ​

Answers

Answered by brunoconti
37

Answer:

Step-by-step explanation:

brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest

Attachments:
Answered by LovelyG
46

Solution:

Given polynomial ;

f(x) = x² - x - 4

On comparing the given equation with ax² + bx + c = 0, we get -

  • a = 1
  • b = - 1
  • c = - 4

Sum of zeroes = \sf - \dfrac{b}{a}

⇒ α + β = - (-1)

⇒ α + β = 1

Product of zeroes = \sf \dfrac{c}{a}

⇒ αβ = - 4

Now,

 \frac{1}{ \alpha }  +  \frac{1}{ \beta } -  \alpha  \beta   \\  \\ \implies   \frac{ \alpha   + \beta  - ( \alpha  \beta ) {}^{2} }{ \alpha  \beta }  \\ \\  \implies  \frac{1 - ( - 4) {}^{2} }{ - 4}  \\  \\ \implies  \frac{1 - 16}{ - 4}  \\  \\ \implies  \frac{ - 15}{ - 4}  \\  \\ \boxed{ \therefore \:  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  -  \alpha  \beta  =  \frac{15}{4} }

Similar questions