Math, asked by venkateshkonka80, 1 month ago

4
If COS A + cos B + cos C = 0 and
COS 3A + cos 3B + cos 3C = K cos A cos B
then K=​

Answers

Answered by mathdude500
4

Appropriate Question :-

If COS A + cos B + cos C = 0 and

COS 3A + cos 3B + cos 3C = K cos A cos B cos C

then K=

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:cosA + cosB + cosC = 0

\bf\implies \:\boxed{ \tt{ \: cosA + cosB =  - cosC}} -  -  -  - (1)

Now, Further given that

\rm :\longmapsto\:cos3A + cos3B + cos3C = KcosAcosBcosC

Consider,

\rm :\longmapsto\:cos3A + cos3B + cos3C

\rm=(4{cos}^{3}A -3cosA) + (4{cos}^{3}B -3cosB) + (4{cos}^{3}C -3cosC)

can be re-arranged as

\rm = 4( {cos}^{3}A +  {cos}^{3}B +  {cos}^{3}C) - 3(cosA + cosB + cosC)

\rm = 4\bigg[({cos}^{3}A +  {cos}^{3}B) +  {cos}^{3}C\bigg] - 3 \times 0

\red{\bigg \{ \because \:using \: equation \: (1) \bigg \}}

We know,

\boxed{ \tt{ \:  {x}^{3} +  {y}^{3} =  {(x + y)}^{3} - 3xy(x + y)}}

So, using this identity, we get

\rm =4\bigg[ {(cosA + cosB)}^{3} - 3cosAcosB(cosA + cosB) +  {cos}^{3}C\bigg]

\rm =4\bigg[ {( - cosC)}^{3} - 3cosAcosB( -cosC) +  {cos}^{3}C\bigg]

\rm =4\bigg[ {- cos}^{3}C  +  3cosAcosBcosC +  {cos}^{3}C\bigg]

\rm \:  =  \:12cosAcosBcosC

Hence,

 \red{\rm :\longmapsto\:cos3A + cos3B + cos3C = 12cosAcosBcosC}

So, on comparing with

 \pink{\rm :\longmapsto\:cos3A + cos3B + cos3C = KcosAcosBcosC}

We get

\bf\implies \:\boxed{ \tt{ \: K \:  =  \: 12 \:  \: }}

More to Know:-

\boxed{ \tt{ \: sin2x = 2sinxcosx =  \frac{2tanx}{1 +  {tan}^{2}x } }}

\boxed{ \tt{ \: tan2x =  \frac{2tanx}{1  -   {tan}^{2}x } }}

\boxed{ \tt{ \: cos2x = 1 -  {2sin}^{2}x =  {2cos}^{2}x - 1}}

\boxed{ \tt{ \: cos2x =  {cos}^{2}x -  {sin}^{2}x =  \frac{1 -  {tan}^{2} x}{1 +  {tan}^{2} x}}}

\boxed{ \tt{ \: sin3x = 3sinx -  {4sin}^{3}x}}

\boxed{ \tt{ \: tan3x =  \frac{3tanx -  {tan}^{3}x }{1 -  {3tan}^{2}x }}}

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Similar questions