Math, asked by indalavaralakshmi28, 11 months ago

4) If coso=2x/1+x^2,then tano=​

Answers

Answered by Anonymous
1

\huge \underline {\underline{ \mathfrak{ \green{Ans}wer \colon}}}

Given :

CosØ = 2x/1 + x²

_____________________

To Find :

  • TanØ

_____________________

Solution :

As we know that :

\large{\boxed{\sf{\cos \theta \: = \: \dfrac{Base}{Hypotenuse}}}}

So,

  • Base = 2x
  • Hypotenuse = 1 + x²

Now use Pythagoras theorem

{\boxed{\sf{Hypotenuse^2 \: = \: Base^2 \: + \: Perpendicular^2}}} \\ \\ \implies {\sf{(1 \: + \: x^2)^2 \: = \: (2x)^2 \: + \: Perpendicular^2}} \\ \\ \implies {\sf{1 \: + \: x^4 \: + \: 2x^2 \: = \: 4x^2 \: + \: Perpendicular^2}} \\ \\ \implies {\sf{Perpendicular^2 \: = \: 1 \: + \: x^4 \: + \: 2x^2 \:  - \: 4x^2}} \\ \\ \implies {\sf{Perpendicular^2 \: = \: 1 \: + \: x^4 \: - \: 2x^2}} \\ \\ \implies {\sf{Perpendicular \: = \: \sqrt{1 \: + \: x^4 \: - \: 2x^2}}}

Now, we know that :

  • TanØ = Perpendicular/Base

⇒TanØ = \sf{\dfrac{\sqrt{(1 \: + \: x^4 \: - \: 2x^2)}}{2x}}

Similar questions