Math, asked by samruddhiA05, 4 months ago

4) If diameter of base is 14 cm and height
is 24 cm, find the curved surface area of
cylinder.​

Answers

Answered by EliteZeal
48

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • Diameter of base is 14 cm

  • Height of base is 24 cm

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • Curved surface area of cylinder

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

 \rm Radius = \dfrac { Diameter } { 2 }

 \:\:

 \rm Radius = \dfrac { 14 } { 2 }

 \:\:

 \rm Radius = 7 \: cm

 \:\:

  • Hence the radius of base is 7 cm

 \:\:

 \underline{\bold{\texttt{Curved surface area of cylinder :}}}

 \:\:

➠ 2πrh ⚊⚊⚊⚊ ⓵

 \:\:

Where ,

 \:\:

  • r = Radius

  • h = Height

 \:\:

 \underline{\bold{\texttt{Curved surface area of given cylinder :}}}

 \:\:

  • r = 7 cm

  • h = 24 cm

 \:\:

Putting the above values in ⓵

 \:\:

➜ 2πrh

 \:\:

 \sf 2 \times \dfrac { 22 } { 7 } \times 7\times 24

 \:\:

➜ 44 × 24

 \:\:

➨ 1056 sq. cm.

 \:\:

  • Hence the curved surface area of cylinder is 1056 sq. cm.

 \:\:

Additional information

 \:\:

Total surface area of cylinder

 \:\:

  • 2πr(h + r)

 \:\:

Where ,

 \:\:

➻ r = Radius

➻ h = Height

 \:\:

Volume of cylinder

 \:\:

  • πr²h

 \:\:

Where ,

 \:\:

➻ r = Radius

➻ h = Height

 \:\:

Answered by Rubellite
6

\Large{\underbrace{\sf{\red{Required\:Solution:}}}}

Given thαt,

  • Diαmeter of bαse = 14cm.
  • And height = 24cm.

◾️We hαve to find the curved surfαce αreα of cylinder.

_________

\large\star{\boxed{\sf{\red{ Radius = \dfrac{Diameter}{2}}}}}

  • Substitute the vαlues αnd simplify.

\implies{\sf{ \dfrac{14}{2}= 7cm}}

Therefore, the rαdius is 7cm.

Now,

\large\star{\boxed{\sf{\red{ Curved\:surface\:area_{(cylinder)} = 2\pi rh}}}}

  • Substitute the vαlues αnd simplify.

:\implies{\sf{ 2\times \dfrac{22}{7} \times 7cm \times 24cm}}

:\implies{\sf{ 2\times \dfrac{22}{\cancel{7}} \times \cancel{7cm} \times 24cm}}

:\implies{\sf{ 2\times 22\times 24}}

\large\implies{\boxed{\sf{\red{ 1,056cm^{2}}}}}

Hence, the curved surfαce αreα of the cylinder is 1,056cm².

And we αre done! :D

__________________________

Similar questions