4) If p= sin + Cos ; q = sec +cosec ; Prove That q (p2-1)=2p
Answers
Answered by
2
Attachments:
Answered by
1
HEY Buddy.....!! here is ur answer
Given that.... p = sinA + cosA
and q = secA + cosecA
Now we have to prove that... q(p²–1) = 2p
On taking L.H.S. => q(p²–1)
=> (secA+cosecA)[(sinA+cosA)²-1]
=> (1/cosA + 1/sinA)(sin²A+cos²A+2sinAcosA–1)
[sinA = 1/cosecA, cosA = 1/secA and
sin²A+cos²A = 1]
=> (sinA+cosA)/sinAcosA × (1+2sinAcosA–1)
=> (sinA+cosA)/sinAcosA × 2sinAcosA
=> 2(sinA+cosA) [ sinA+cosA = p]
=>2p = R.H.S.
I hope it will be helpful for you..!!
THANK YOU ✌️✌️
Given that.... p = sinA + cosA
and q = secA + cosecA
Now we have to prove that... q(p²–1) = 2p
On taking L.H.S. => q(p²–1)
=> (secA+cosecA)[(sinA+cosA)²-1]
=> (1/cosA + 1/sinA)(sin²A+cos²A+2sinAcosA–1)
[sinA = 1/cosecA, cosA = 1/secA and
sin²A+cos²A = 1]
=> (sinA+cosA)/sinAcosA × (1+2sinAcosA–1)
=> (sinA+cosA)/sinAcosA × 2sinAcosA
=> 2(sinA+cosA) [ sinA+cosA = p]
=>2p = R.H.S.
I hope it will be helpful for you..!!
THANK YOU ✌️✌️
Similar questions