Math, asked by akshat5295, 10 months ago

4. If p™term of an A.P is q, q™ term is p, prove that its n™term is (p + q-n).​

Answers

Answered by BrainlyConqueror0901
64

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

 \:  \: { \orange{ given}}\\ { \pink{ \boxed{ \green{ \therefore ap = q}}}} \\ { \pink{ \boxed{ \green{ \therefore aq = p}}}} \\  \\ \:  \: \:  \:   \:  \:  \:  \:  \: { \blue {to \: prove}} \\  {\purple{  \boxed {\red{nth \: term = (p + q - n)}}}}

PROOF:

 \to ap = q \\  \to a + (p - 1)d = q -  -  -  -  -  (1) \\  \\  \to aq = p \\  \to a + (q - 1)d = p -  -  -  -  - (2)

Subtracting (2) from (1)

 \to a + (p - 1)d - (a + (q - 1)d =  q - p \\  \to a + (p - 1)d - a - (q - 1)d =  q - p \\  \to (p - 1 - q + 1)d =  q  - p\\  \to (p - q)d = q - p \\  \to d =  \frac{q - p}{ p - q}  \\ \to d =  \frac{ - (p - q)}{p - q}  \\  { \boxed {\to d =  - 1}}

Putting value of d in (1)

 \to \: a + (p - 1) \times ( - 1) = q \\  \to a + ( - p + 1) = q \\  \to a =p - 1 + q   \\  \\ \to nth \: term = a + (n - 1)( - 1) \\  \to \: p  - 1 + q + (n - 1)d \\  \to p - 1 + q - n + 1 \\   {\green{ \boxed{\to \: (p + q - n )}}}

\huge{\pink{\boxed{\green{\underline{\sf{PROVED}}}}}}

_________________________________________

Similar questions