Math, asked by daniyashaikh29, 3 months ago

4. If sin =1/2 then find cos ​

Answers

Answered by BrainlyRish
5

Given : \sf{\sin \theta = \dfrac{1}{2}}\\

Need To Find : The value of cos \theta .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Basic Formulas of Trigonometry is given by :

\boxed { \begin{array}{c c} \\ \dag \qquad \large {\underline {\bf{ Some \:Basic\:Formulas \:For\:Trigonometry \::}}}\\\\ \sf{ In \:a \:Right \:Angled \: Triangle-:} \\\\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star  \tan \theta = \dfrac{Perpendicular}{Base}} \end{array}}\\

Then,

  • \sf{\sin \theta = \dfrac{1}{2}= \dfrac{Perpendicular} { Hypotenuse} }\\

Therefore,

  • Perpendicular of Right Angled Triangle is 1 cm .

  • Hypotenuse of Right angled triangle is 2 cm .

⠀⠀⠀⠀⠀Finding Base of Right angled triangle :

\sf{\underline {\dag As, \:We \:Know\:that \::}}\\ \\ \bf{ By \:Pythagoras\:Theorem\::}\\

\underline {\boxed {\sf{\star (Perpendicular)^{2} + Base^{2}  = ( Hypotenuse)^{2} }}}\\

❍ Let's Consider Base of Triangle be x .

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

⠀⠀⠀⠀⠀:\implies \tt{ 1^{2} + x^{2} = 2^{2}}\\

⠀⠀⠀⠀⠀:\implies \tt{ 1 + x^{2} = 4}\\

⠀⠀⠀⠀⠀:\implies \tt{  x^{2} = 4- 1}\\

⠀⠀⠀⠀⠀:\implies \tt{  x^{2} = 3}\\

⠀⠀⠀⠀⠀:\implies \tt{  x = \sqrt{3}}\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  x = \sqrt {3}\: }}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\underline {\therefore\:{ \mathrm {  Base  \:of\:Right \:Angled \:triangle \:is\:\sqrt {3}cm\: }}}\\

❒ Finding value of cos \theta by using found values :

\sf{\underline {\dag As, \:We \:Know\:that \::}}\\ \\

  • \sf{\cos \theta =  \dfrac{Base} { Hypotenuse} }\\

Where ,

  • Base of Right Angled Triangle is \sqrt {3} cm.

  • Hypotenuse of Right angled triangle is 2 cm .

Therefore,

⠀⠀⠀⠀⠀\sf{\cos \theta = \dfrac{\sqrt{3}}{2}= \dfrac{Base} { Hypotenuse} }\\

\underline {\boxed{\pink{ \mathrm { Hence,\:The\:Value \:of\:\cos \theta  = \dfrac{\sqrt{3}}{2}\: }}}}\:\bf{\bigstar}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Answered by Anonymous
67

Given :-

\\

  • sin ø = \large{\rm{\frac{1}{2}}}

\\

To find :-

\\

  • The value of cos ø

\\

❍ Basic Formulae of Trigonometry is

Given by,

\\

\begin{gathered}\boxed { \begin{array}{c c} \\ \dag \qquad \large {\underline {\bf{ Some \:Basic\:Formulas \:For\:Trigonometry \::}}}\\\\ \sf{ In \:a \:Right \:Angled \: Triangle-:} \\\\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star  \tan \theta = \dfrac{Perpendicular}{Base}} \end{array}}\\\end{gathered}

\\

Now,

\\

  • \boxed{\rm{sin \: ø = \frac{1}{2}} = {\frac{Base} {Hypotenuse}}}\large\star

\\

Therefore,

\\

  • Perpendicular of Right Angled Triangle is 1 cm.
  • Hypotenuse of Right Angled Triangle is 2 cm.

\\

Finding Base of Right Angled Triangle

\\

\large\underline{\frak{We \: know \: that,}}

\\

\large\underline{\rm{By \: Pythagoras \: Theorem}}

\\

  • {\underline{\boxed{\green{\frak{(Perpendicular)²~+~Base²~=~Hypotenuse)² }}}}}

\\

❍ Let's consider Base of Triangle be x

\\

Substituting the value,

\\

:\implies1² + x² = 2²

\\

~~~~~:\implies1 + x² = 4

\\

~~~~~~~~~~:\impliesx² = 4 - 1

\\

~~~~~~~~~~~~~~~:\impliesx² = 3

\\

~~~~~~~~~~~~~~~~~~~~:\implies{\sf{x =  \sqrt{3} }}

\\

~~~~~~~~~~~~~~~~~~~~~~~~~:\implies\large{\underline{\boxed{\pink{\frak{x~= \sqrt{3}}}}}}

\\

\large\dag Hence,

\\

  • Base of the Right Angled Triangle is \large{\rm{\sqrt{3}}}

\\

  • Finding value of cose ø
  • Using find value :

\\

\large\underline{\frak{We \: know \: that,}}

\\

  • \large\boxed{\rm{sin \: ø = \frac{Base}{Hypotenuse}}}\large\star

\\

Therefore,

\\

  • Base of Right Angled Triangle is \large{\rm{\sqrt{3 \: cm}}}
  • Hypotenuse of Right Angled Triangle is 2 cm.

\\

Henceforth,

\\

  • \large\boxed {\rm {cos \: ø = \frac {\sqrt3}{2}} = {\frac{Base}{Hypotenuse} }}\large\star

\\

\large\dag Hence Proved,

\\

  • The value of the cos ø = \large{\rm{\sqrt{3}{2}}}
Similar questions