Math, asked by piyush44517, 1 year ago

4.
If tanΦ+SinΦ =m and tanΦ - SinΦ = n then find the value of m2 - n2?
(A) 4√mn
(B) 4mn.
(C) 2√mn
(D) √mn​

Answers

Answered by Bianchi
4

Answer:

(A) 4√mn

Step-by-step explanation:

{m}^{2}   -  {n}^{2} \\  =  {(\tan \theta \:  +  \: \sin \theta)}^{2}   - {( \tan \theta - \sin \theta)}^{2}   \\  =  {\tan }^{2}  \theta  \: +  \:  { \sin }^{2}  \theta + 2\tan \theta\sin \theta - {\tan }^{2}  \theta  \:  -   \:  { \sin }^{2}  \theta + 2\tan \theta\sin \theta  \\ =  4\tan \theta\sin\theta \\  = 4 \sqrt{ (\sec {}^{2} \theta - 1)( 1 - { \cos }^{2} \theta)}  \\  = 4 \sqrt{ { \sec }^{2} \theta+  { \cos}^{2}\theta - 2}  \\  = 4 \sqrt{( ({ \tan }^{2}\theta + 1) + (1 - { \sin}^{2}  \theta) - 2}  \\  = 4 \sqrt{ { \tan }^{2} \theta -  { \sin}^{2}\theta}  \\  = 4 \sqrt{( \tan\theta +  \sin \theta)(\tan\theta  -   \sin \theta)} \\  =  4 \sqrt{mn}

HOPE IT'LL HELP.... :)

Similar questions