Math, asked by pralhadk9922, 3 days ago

4) If tan20 = 3 then find the value of seco​

Answers

Answered by shaikashu001
0

Answer:

given tan^2O =3

square rooting on both sides we get

tanO=√3

when O = 60° we get tanO=√3

secO=sec60°=2

secO=2

or

given

tan^2O=3

we know that

sec^2a-tan^2a=1

substituting the given we get,

sec^2O-3=1

sec^2O=1+3

sec^2O=4

square rooting on both sides we get

secO=√4=2

secO=2

Answered by mathdude500
3

Appropriate :-

\rm \: If \: tan2x = 3, \: find \: the \: value \: of \: secx \\

\large\underline{\sf{Solution-}}

Given that,

\rm \: tan2x = 3  \\

\rm \: \dfrac{2 \: tanx}{1 -  {tan}^{2}x}  = 3 \\

\rm \: 3 - 3 {tan}^{2}x = 2tanx \\

\rm \:  3{tan}^{2}x + 2tanx - 3 = 0 \\

Its a quadratic in tanx, so roots are evaluated by using Quadratic formula. So,

\rm \: tanx = \dfrac{ - 2 \: \pm \:  \sqrt{ {2}^{2}  +  4 \times  \times 3} }{2(3)}  \\

\rm \: tanx = \dfrac{ - 2 \: \pm \:  \sqrt{4 + 36} }{6}  \\

\rm \: tanx = \dfrac{ - 2 \: \pm \:  \sqrt{40} }{6}  \\

\rm \: tanx = \dfrac{ - 2 \: \pm \: 2 \sqrt{10} }{6}  \\

\rm \: tanx = \dfrac{ - 1 \: \pm \:  \sqrt{10} }{3}  \\

\rm \: tanx = \dfrac{ - 1+\sqrt{10} }{3}  \:  \: or \:  \: tanx = \dfrac{ - 1 - \sqrt{10} }{3} \\

Case :- 1

\rm \: tanx = \dfrac{ - 1+\sqrt{10} }{3}  \:  \\

\rm\implies \:tanx > 0 \\

\rm\implies \:x \:  \in \: \bigg(0,\dfrac{\pi}{2}  \bigg)  \cup \: \bigg(\pi ,\dfrac{3\pi}{2}  \bigg)  \\

\rm\implies \:secx > 0 \:  \: or \:  \: secx < 0 \\

We know,

\rm \:  {sec}^{2}x -  {tan}^{2}x = 1 \\

\rm \:  {sec}^{2}x = {tan}^{2}x + 1 \\

\rm \:  {sec}^{2}x =  {\bigg[\dfrac{ \sqrt{10}  - 1}{3} \bigg]}^{2}  + 1 \\

\rm \:  {sec}^{2}x =  \dfrac{10 + 1 - 2 \sqrt{10} }{9}  + 1 \\

\rm \:  {sec}^{2}x =  \dfrac{11 - 2 \sqrt{10} }{9}  + 1 \\

\rm \:  {sec}^{2}x =  \dfrac{11 - 2 \sqrt{10}  + 9}{9}  \\

\rm \:  {sec}^{2}x =  \dfrac{20 - 2 \sqrt{10}}{9}  \\

\rm \:  {sec}x =  \: \pm \:   \sqrt{\dfrac{20 - 2 \sqrt{10}}{9}}  \\

or

\rm \:  {sec}x =  \: \pm \:    \frac{ \sqrt{20 - 2 \sqrt{10} } }{3}   \\

Case :- 2

\rm \:When \:  tanx = \dfrac{ - 1 - \sqrt{10} }{3}  \:  \\

\rm\implies \:tanx < 0 \\

\rm\implies \:x \:  \in \: \bigg(\dfrac{\pi}{2} ,\pi\bigg)  \:  \cup \: \bigg(\dfrac{3\pi}{2} ,2\pi \bigg)  \\

\rm\implies \:secx < 0 \:  \: or \:  \: secx > 0 \\

Now, we know

\rm \:  {sec}^{2}x -  {tan}^{2}x = 1 \\

\rm \:  {sec}^{2}x = {tan}^{2}x + 1 \\

\rm \:  {sec}^{2}x =  {\bigg[\dfrac{  - \sqrt{10}  - 1}{3} \bigg]}^{2}  + 1 \\

\rm \:  {sec}^{2}x =  {\bigg[\dfrac{ \sqrt{10} + 1}{3} \bigg]}^{2}  + 1 \\

\rm \:  {sec}^{2}x =  \dfrac{10 + 1 + 2 \sqrt{10} }{9}  + 1 \\

\rm \:  {sec}^{2}x =  \dfrac{11 + 2 \sqrt{10} }{9}  + 1 \\

\rm \:  {sec}^{2}x =  \dfrac{11 + 2 \sqrt{10}  + 9}{9}  \\

\rm \:  {sec}^{2}x =  \dfrac{20 + 2 \sqrt{10}}{9}  \\

\rm \:  {sec}x =  \: \pm \:   \sqrt{\dfrac{20 + 2 \sqrt{10}}{9}}  \\

or

\rm \:  {sec}x =  \: \pm \:    \frac{ \sqrt{20 + 2 \sqrt{10} } }{3}   \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered} {\boxed{ \begin{array}{c} \underline{\underline{ \text{Additional \: lnformation}}} \\ \\ &  \rm \: sin2x  \: =  2 \: sinx \: cosx\:\\ &  \rm \: cos2x = 1 -  {2sin}^{2}x \\ &  \rm \: cos2x =  {2cos}^{2}x - 1 \\ &  \rm \: cos2x =  {cos}^{2}x -  {sin}^{2}x \\ &  \rm \:tan2x =  \dfrac{2tanx}{1 -  {tan}^{2} x} \\ &  \rm \: sin2x =  \dfrac{2tanx}{1 +  {tan}^{2}x } \\ &  \rm \:sin3x = 3sinx -  {4sin}^{3}x \\ &  \rm \: cos3x =  {4cos}^{3}x - 3cosx \\ &  \rm \: tan3x =  \dfrac{3tanx -  {tan}^{3} x}{1 -  {3tan}^{2}x}  \end{array}}}\end{gathered}

Similar questions