Math, asked by shashibkj0022, 2 months ago

4.
If the area of a trapezium is 28 m2, and two parallel sides are 8 m and 60 dm
respectively, find the altitude.
5.
Find the height of a trapezium whose area is 1,080 cm2 and lengths of its parallel
sides are 55.6 cm and 34.4 cm.
its​

Answers

Answered by sethrollins13
74

For 1 :

Given :

  • Area of Trapezium is 28 m² .
  • Length of the parallel sides are 8 m and 60 dm .

To Find :

  • Altitude / Height

Solution :

\longmapsto\tt{Parallel\:Sides=8\:m\:and\:60\:dm\:i.e. 6\:m}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Trapezium=\dfrac{1}{2}\times{(Sum\:of\:parallel\:sides)}\times{h}}

Putting Values :

\longmapsto\tt{28=\dfrac{1}{2}\times{(8+6)}\times{h}}

\longmapsto\tt{28=\dfrac{1}{{\cancel{2}}}\times{{\cancel{14}}}\times{h}}

\longmapsto\tt{28=7\:h}

\longmapsto\tt{h=\dfrac{28}{7}}

\red\longmapsto\:\large\underline{\boxed{\bf\green{h}\orange{=}\purple{4\:m}}}

So , The Altitude/Height is 4 m .

_____________________________

For 2 :

Given :

  • Area of Trapezium is 1080 cm² .
  • Length of the parallel sides are 55.6 cm and 34.4 cm .

To Find :

  • Altitude / Height

Solution :

\longmapsto\tt{Parallel\:Sides=55.6\:cm\:and\:34.4\:cm}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Trapezium=\dfrac{1}{2}\times{(Sum\:of\:parallel\:sides)}\times{h}}

Putting Values :

\longmapsto\tt{1080=\dfrac{1}{2}\times{(55.6+34.4)}\times{h}}

\longmapsto\tt{1080=\dfrac{1}{{\cancel{2}}}\times{{\cancel{90}}}\times{h}}

\longmapsto\tt{1080=45\:h}

\longmapsto\tt{h=\dfrac{1080}{45}}

\red\longmapsto\:\large\underline{\boxed{\bf\green{h}\orange{=}\purple{24\:cm}}}

So , The Altitude/Height is 24 cm .

Answered by PopularAnswerer01
113

Question:-

  • If the area of a trapezium is 28 m2, and two parallel sides are 8 m and 60 m respectively, find the altitude.

To Find:-

  • Find the height.

Formula to be Used:-

  • \sf \: Area = \dfrac { 1 } { 2 } \times ( Sum \: of \: parallel \: Sides )h

Solution:-

\sf\longrightarrow \: 28 = \dfrac { 1 } { 2 } \times ( 8 + 6 )h

\sf\longrightarrow \: 28 = \dfrac { 1 } { 2 } \times 14 \times h

\sf\longrightarrow \: 28 = 7h

\sf\longrightarrow \: h = \cancel\dfrac { 28 } { 7 }

\sf\longrightarrow \: h = 4

Hence ,

  • Height is 4 m.

Question:-

  • Find the height of a trapezium whose area is 1,080 cm² and lengths of its parallel sides are 55.6 cm and 34.4 cm.

To Find:-

  • Find the height.

Formula to be Used:-

  • \sf \: Area = \dfrac { 1 } { 2 } \times ( Sum \: of \: parallel \: Sides )h

Solution:-

\sf\longrightarrow \: 1080 = \dfrac { 1 } { 2 } \times ( 55.6 + 34.4 )h

\sf\longrightarrow \: 1080 = \dfrac { 1 } { \cancel 2 } \times \cancel { 90 } \times h

\sf\longrightarrow \: 1080 = 45h

\sf\longrightarrow \: h = \cancel\dfrac { 1080 } { 45 }

\sf\longrightarrow \: h = 24

Hence ,

  • Height is 24 cm
Similar questions