Math, asked by nishajha6007, 5 days ago

4) If the diameter of a cylinder is held then find the ratio between the volume of new and the old one?​

Answers

Answered by pradhanmadhumita2021
20

\huge{\mathtt{{\green{\boxed{\tt{\blue{\red{Ans}\gray{wer}}}}}}}}\\ Given, \\Diameter  \: of  \: the \:  new \:  cylinder:  \frac{d}{2} \\ Thus, \\ Radius \:  of \:  the \:  new \:  cylinder \:  = \:  \frac{1}{2}   x  \frac{d}{2} =  \frac{d}{4}\\Now, \\Volume \:  of \:  the \:  new  \: cylinder  \: with  \: that  \: of  \: the \:  old  \: cylinder. \\=   \frac{ \frac{1}{3}\pi {r}^{2} h }{ \frac{1}{3}\pi {r}^{2}h} \\  =  \frac{ \frac{1}{3}\pi (\frac{d}{ {4}})^{2}h}{ \frac{1}{3}\pi (\frac{d}{2})^{2}h} \\ \frac{ \frac{ {d}^{2} }{16} }{ { \frac{d}{4}}^{2}} \\  = \frac{4}{1} \\ =4:1 \\ \sf\orange{◆━━━━━━━▣✦▣━━━━━━━━◆}

Similar questions