Math, asked by pranayrathod691, 3 months ago

4)If the perimeter of rhombus is 100 cm and length of one of the diagonal is 48 cm, what is the
area of the rhombus?​

Answers

Answered by ItzMeMukku
2

{ \large{ \sf{ \underbrace{\underline{\bigstar \:Answer:}}}}}

The area of quadrilateral is 336 cm².

{ \large{ \sf{ \underbrace{\underline{\bigstar \:Step\:-by-\:step \:explanation:}}}}}

A rhombus has four equal sides. The perimeter of a rhombus is 100 cm.

\sf\color{magenta}{4a\:=\:100}

\sf\color{magenta}{a=25}

\mathbb{The\:  measure\:  of\:  each \: \: side\:  is \: 25}

4a^2=d_1^2+d_2^24a

\mathbb{Where\: , a \: is \: side\:  length \: and \: d₁ \: and\:  d₂ \: are\:  diagonals}

4(25)^2=(48)^2+d_2^24(25)

d_2=\sqrt{2500-2304}

\mathbb{The\: area\:  of\:  rhombus\:  is}

A=\frac{1}{2}(d_1d_2)

A=\frac{1}{2}\times 48\times 14

\tt{A=336}

\textbf\color{magenta}{Therefore the area of quadrilateral is 336 cm².}

More to know :-

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}\end{gathered}

Note :-

~Scrooll to see full answer

Similar questions