4/ If the roots of the quadratic equation (x – a) (x – b) + (x – b)(x - c) + (x – C)(x – a) = 0 are equal. Then,
show that a = b = c.
Answers
EXPLANATION.
Roots of the quadratic equation.
⇒ (x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a) = 0.
As we know that,
Expand the equation, we get.
⇒ (x² - bx - ax + ab) + (x² - cx - bx + bc) + (x² - ax - cx + ac) = 0.
⇒ x² - bx - ax + ab + x² - cx - bx + bc + x² - ax - cx + ac = 0.
⇒ 3x² - 2ax - 2bx - 2cx + ab + bc + ac = 0.
⇒ 3x² - 2(a + b + c)x + (ab + bc + ac) = 0.
As we know that,
⇒ D = Discriminant Or b² - 4ac.
⇒ [-2(a + b + c)² - 4(3)(ab + bc + ac)] = 0.
⇒ [4(a + b + c)² - 4(3)(ab + bc + ac)] = 0.
⇒ [4(a² + b² + c² + 2ab + 2bc + 2ac) - 12(ab + bc + ac)] = 0.
⇒ [4(a² + b² + c² + 2ab + 2bc + 2ac) - 12ab - 12bc - 12ac ] = 0.
⇒ [4a² + 4b² + 4c² + 8ab + 8bc + 8ac - 12ab - 12bc - 12ac] = 0.
⇒ [4a² + 4b² + 4c² - 4ab - 4bc - 4ac] = 0.
⇒ 2[2a² + 2b² + 2c² - 2ab - 2bc - 2ac] = 0.
⇒ 2[(a - b)² + (b - c)² + (c - a)²] = 0.
⇒ a - b = 0.
⇒ a = b.
⇒ b - c = 0.
⇒ b = c.
⇒ c - a = 0.
⇒ c = a.
Hence proved = a = b = c.
MORE INFORMATION.
Quadratic expression.
A polynomial of degree two of the form ax² + bx + c (a ≠ 0) is called a quadratic expression in x.
The quadratic expression.
ax² + bx + c = 0 (a ≠ 0) has two roots, given by.
⇒ α = - b + √D/2a.
⇒ β = - b - √D/2a.
⇒ D = Discriminant Or b² - 4ac.
Given :
To find :
Solution :
Let us discriminate each side of the problem .
First we should rearrange the equation