4. If the volume of a right circular cone of height 9 cm is 48 r cm, find
the diameter of its base.
Answers
Given -
- Volume of right circular cone = 48 cm
- Height (h) of right circular cone = 9 cm
To find -
- The diameter of the base
Solution -
We know that,
By putting the values we will get -
We know that,
Diameter =2×radius(r)
=2×2.3
=4.6
Therefore the diameter of the base is 4.6 cm
Related Formulae -
Answer:
Given -
Volume of right circular cone = 48 cm
Height (h) of right circular cone = 9 cm
To find -
The diameter of the base
Solution -
We know that,
Volume \: of \: cone = \frac{1}{3} \pi {r}^{2} hVolumeofcone=
31πr 2 h
By putting the values we will get -
48 = \frac{1}{3} \times \frac{22}{7} \times {r}^{2} \times 948=
31 × 722 ×r 2×9
48 = \frac{66}{7} \times {r}^{2}48=
766×r 2
{r}^{2} = 48 \div \frac{66}{7}r
2 =48÷ 766
{r}^{2} = 48 \times \frac{7}{66}r
2=48× 667
{r}^{2} = \frac{56}{11}r
2= 1156
{r}^{2} = 5.1r 2=5.1
r = \sqrt{5.1}r= 5.1
r = 2.3r=2.3
We know that,
Diameter =2×radius(r)
=2×2.3
=4.6
Therefore the diameter of the base is 4.6 cm
Related Formulae -
1)Volume \: of \: cone = \frac{1}{3} \pi {r}^{2} h1)Volumeofcone=
31 πr 2 h
2)C. S. A \: of \: cone = \pi \: rl2)C.S.Aofcone=πrl
3)T. S. A \: of \: cone = \pi \: r(l + r)3)T.S.Aofcone=πr(l+r)