4) If x= 1+ V2, then find the values of x2 +
Answers
Answered by
1
x = √5 + 2
⇒ 1 / x = 1 / √5 + 2
⇒ 1 / x = 1 / √5 + 2 × √5 - 2 / √5 - 2
⇒ 1 / x = √5 - 2 / ( √5 )² - ( 2 ) ²
⇒ 1 / x = √5 - 2 / 5 - 4
⇒ 1 / x = √5 - 2
Now,
x + 1 / x = √5 + 2 + √5 - 2
x + 1 / x = 2 √5
Again,
On squaring both sides, we have ;
( x + 1 / x )² = ( 2 √5 ) ²
⇒ x² + 1 / x² + 2 = 20
⇒ x² + 1 / x² = 20 - 2
⇒ x² + 1 / x² = 18
Hence,
The value of x² + 1 / x² = 18.
Similar questions