Math, asked by prachibharti926793, 9 months ago


4.
If x + 1/x = 11 find the value of x^2 + 1/x^2 ?


Answers

Answered by prince5132
4

GIVEN :-

 \to \sf \: x +  \dfrac{1}{x}  = 11

TO FIND :-

 \to \sf \: value \: of \: x ^{2}  +  \dfrac{1}{x^{2} }

SOLUTION :-

 \to \sf \: x +  \dfrac{1}{x}  = 11 \\

Squaring both sides,

 \\  \to \sf \bigg \{x +  \dfrac{1}{x} \bigg \} ^{2}  = 11 ^{2} \\

By using identity :- (a + b)² = a² + b² + 2ab.

  \\ \to \sf \: (x )^{2}  + \left(\dfrac{1}{x}   \right) ^{2}   + 2 \times \cancel{x}\times  \dfrac{1}{ \cancel{x} } = 121 \\  \\ \\   \to \sf \: x ^{2}  +  \dfrac{1}{x ^{2} }  + 2 = 121 \\  \\ \\   \to \sf \: x ^{2}  +  \dfrac{1}{x ^{2} }  = 121 - 2\\  \\ \\  \to  \boxed{ \red{ \sf \: x ^{2}  +  \dfrac{1}{x ^{2} } = 119}}

Hence x² + 1/x² = 119.

ADDITIONAL INFORMATION :-

☢ Some Algebraic Identities :-

➳ ( x + y )² = x² + 2xy + y²

➳ ( x - y )² = x² - 2xy + y²

➳ ( x - y ) ( x -y ) = ( x - y )²

➳ ( x + y ) ( x + y ) = ( x + y )²

➳ x² - y² = ( x + y ) ( x - y )

➳ ( x + y + z )² = x² + y² + z² + 2xy + 2yz + 2zx.

➳ ( x + a ) ( x + b ) = x² + ( a + b)x + ab

Answered by Anonymous
99

 \sf \: x \:   \frac{1}{x}  = 11 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {x}^{2}  +  \frac{1}{x}  = ?

 \sf \: x +  \frac{1}{x}  = 1

 \color{blue} \bigstar  \displaystyle \tt \:  \sf  \color{red}Squaring \:  \: both \:  \: sides

 \sf \:  \bigg(x +  \frac{1}{x}  { \bigg)}^{2}  =  { \bigg(11 \bigg)}^{2}

 \sf \bigg(a + b { \bigg)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2}

 \color{red} \sf \: a = x \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  b =  \frac{1}{x}

 \sf \:  {x}^{2}  + 2 \times x \times  \frac{1}{x}  +  \frac{1}{ {x}^{2} }  = 121


 \sf {x}^{2}  + 2 +  \frac{1}{ {x}^{2} }  = 121

\underline {  \boxed{  \sf{x}^{2}  +  \frac{1}{ {x}^{2}  }  = 121 - 2 =  \color{red} 119}}
Similar questions