Math, asked by ravikumarkv1966, 11 months ago

4. If x=2+√3, then
find x+1/x​

Answers

Answered by BrainlyConqueror0901
26

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{x+\frac{1}{x}=4}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}}   \\   \tt: \implies x = 2 +  \sqrt{3}    \\  \\  \red{\underline \bold{To \: Find:}}   \\  \tt:  \implies x +  \frac{1}{x}  = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {(x +  \frac{1}{x}) }^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times  \cancel{x} \times  \frac{1}{ \cancel{x}}  \\  \\ \tt:  \implies  {(x +  \frac{1}{x}) }^{2}  = {(2 +  \sqrt{3}) }^{2}  +  \frac{1}{(2 +  \sqrt{3})^{2}  }  + 2 \\  \\ \tt:  \implies  {(x +  \frac{1}{x}) }^{2}  = 4 + 3 + 4 \sqrt{3}  +  \frac{1}{4 + 3 + 4 \sqrt{3} }  + 2 \\  \\ \tt:  \implies  {(x +  \frac{1}{x}) }^{2}  =7 + 4 \sqrt{3}  +  \frac{1}{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  + 2 \\  \\ \tt:  \implies  {(x +  \frac{1}{x}) }^{2}  =7 + 4 \sqrt{3}  +  \frac{7 - 4 \sqrt{3} }{49 - 48}  + 2 \\  \\ \tt:  \implies  {(x +  \frac{1}{x}) }^{2}  =7 \cancel{+ 4 \sqrt{3}} + 7 \cancel{- 4 \sqrt{3}} + 2 \\  \\ \tt:  \implies  {(x +  \frac{1}{x}) }^{2}  = 14 + 2 \\  \\ \tt:  \implies  {(x +  \frac{1}{x}) }^{2}  = 16 \\  \\ \tt:  \implies  {(x +  \frac{1}{x}) }  =  \sqrt{16}  \\  \\  \green{\tt:  \implies  x +  \frac{1}{x}   =4}

Answered by AdorableMe
67

Given:-

\bold{x=2+\sqrt{3}}

To find:-

The value of \bold{x+\frac{1}{x}}.

Solution:-

\bold{(x+\frac{1}{x})^2=x^2+(\frac{1}{x}  )^2+2}\\\\\bold{\implies (x+\frac{1}{x})^2 =(2+\sqrt{3})^2+[\frac{1}{(2+\sqrt{3})^2 }]  +2}\\\\\bold{\implies (x+\frac{1}{x})^2=4+3+4\sqrt{3}+\frac{1}{4+3+4\sqrt{3} } +2  }\\\\\bold{\implies (x+\frac{1}{x})^2=7+4\sqrt{3}+\frac{1}{7+4\sqrt{3}}+2}\\\\\bold{\implies (x+\frac{1}{x})^2=9+4\sqrt{3}+\frac{7-4\sqrt{3} }{(7-4\sqrt{3})(7+4\sqrt{3})} }\\\\\bold{\implies (x+\frac{1}{x})^2=9+4\sqrt{3}+\frac{7-4\sqrt{3} }{(7)^2-(4\sqrt{3})^2}   }\\\\

\bold{\implies(x+\frac{1}{x})^2=9+4\sqrt3+\frac{7-4\sqrt{3} }{49-48}   }\\\\\bold{\implies (x+\frac{1}{x})^2=9+4\sqrt{3}+7-4\sqrt{3}   }\\\\\bold{\implies (x+\frac{1}{x})^2=9+7 }\\\\\bold{\implies (x+\frac{1}{x})^2=16}\\\\\boxed{\implies x+\frac{1}{x}=4}

Formula(s) used:-

  • (a + b)² = a² + b² + 2ab
  • And rationalisation of denominator.
Similar questions