Math, asked by minecraft63708, 6 months ago

4. if x= 7+ 40, find the value of root x+ 1/root x

Answers

Answered by Gayatrishende1234
15

I hope this will help you dear..

Always stay safe and stay healthy..

Attachments:
Answered by DeathAura
0

Answer:

Answer:

\sqrt{x}+\frac{1}{\sqrt{x}}=\frac{4\sqrt{5}+2\sqrt{2}}{3}

x

+

x

1

=

3

4

5

+2

2

Step-by-step explanation:

i) Given x = 7+√40

=> x = 7+√2×2×10

=> x = 7+2√10

=> x = 7+2×√5×√2

=> x = 5+2+2×√5×√2

=> x = (√5)²+(√2)²+2×√5×√2

=> x = (√5+√2)²

=> √x = √5+√2 ----(1)

Now ,

ii)\frac{1}{\sqrt{x}}ii)

x

1

= \frac{1}{\sqrt{5}+\sqrt{2}}

5

+

2

1

/* Rationalising the denominator, we get

=\frac{\sqrt{5}-\sqrt{2}}{(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})}

(

5

+

2

)(

5

2

)

5

2

=\frac{\sqrt{5}-\sqrt{2}}{(\sqrt{5})^{2}-(\sqrt{2})^{2}}

(

5

)

2

−(

2

)

2

5

2

=\frac{\sqrt{5}-\sqrt{2}}{5-2}

5−2

5

2

=\frac{\sqrt{5}-\sqrt{2}}{3}

3

5

2

----(2)

iii) \sqrt{x}+\frac{1}{\sqrt{x}}iii)

x

+

x

1

=\sqrt{5}+\sqrt{2}+\frac{\sqrt{5}-\sqrt{2}}{3}

5

+

2

+

3

5

2

=\frac{3(\sqrt{5}+\sqrt{2})+\sqrt{5}-\sqrt{2}}{3}

3

3(

5

+

2

)+

5

2

=\frac{3\sqrt{5}+3\sqrt{2}+\sqrt{5}-\sqrt{2}}{3}

3

3

5

+3

2

+

5

2

=\frac{4\sqrt{5}+2\sqrt{2}}{3}

3

4

5

+2

2

Therefore,

\sqrt{x}+\frac{1}{\sqrt{x}}=\frac{4\sqrt{5}+2\sqrt{2}}{3}

x

+

x

1

=

3

4

5

+2

2

Similar questions