Math, asked by shaikh66778899, 9 months ago

4. If x2 +1/x2= 27 , find the values of each of the following:
(i)x+1/x
(ii)x-1/x​

Answers

Answered by Darkrai14
10

ɢɪᴠᴇɴ:-

  •  \sf x^2 + \dfrac{1}{x^2}=27

ᴛᴏ ғɪɴᴅ:-

  •  \sf x + \dfrac{1}{x}

  •  \sf x-\dfrac{1}{x}

ՏϴᏞႮͲᏆϴΝ:-

 \sf x + \dfrac{1}{x}

We know that,

\qquad\qquad\qquad\bigstar\underline{\boxed{ \sf (a+b)^2 = a^2 + b^2 +2ab}}\bigstar

Using this identity,

 \implies\sf \Bigg \lgroup x +\dfrac{1}{x} \Bigg \rgroup^2 =   x^2 + \dfrac{1}{x^2}+2 \times x \times \dfrac{1}{x}

 \implies\sf \Bigg \lgroup x +\dfrac{1}{x} \Bigg \rgroup^2 = 27+2

 \implies\sf \Bigg \lgroup x +\dfrac{1}{x} \Bigg \rgroup^2 = 29

 \implies\sf  x +\dfrac{1}{x} = \sqrt{29}

 \qquad\qquad\qquad\qquad\bigstar \underline{\boxed{\sf  x +\dfrac{1}{x} = \sqrt{29}}} \bigstar

________________________________

 \sf x - \dfrac{1}{x}

We know that,

\qquad\qquad\qquad\bigstar\underline{\boxed{ \sf (a-b)^2 = a^2 + b^2 -2ab}}

Using this identity,

 \implies\sf \Bigg \lgroup x -\dfrac{1}{x} \Bigg \rgroup^2 =   x^2 + \dfrac{1}{x^2}-2 \times x \times \dfrac{1}{x}

 \implies\sf \Bigg \lgroup x -\dfrac{1}{x} \Bigg \rgroup^2 = 27-2

 \implies\sf \Bigg \lgroup x -\dfrac{1}{x} \Bigg \rgroup^2 = 25

 \implies\sf  x -\dfrac{1}{x} = \sqrt{25}

 \implies\sf x -\dfrac{1}{x}= 5

\qquad\qquad\qquad\qquad\bigstar\underline{\boxed{ \sf x - \dfrac{1}{x} = 5}}\bigstar

Hope it helps

Similar questions