4. Ifa=2,b=-2, find the value of:
(i) a + b (ii) a² + ab + b?
Answers
Answered by
1
Answer:
Step-by-step explanation:
We know that
(a - b)² = a² + b² - 2ab
Here ab = 4
a² + b² = 41
By substituting the values
⇒ (a - b)² = (41) - 2(4)
⇒ (a - b)² = 41 - 8
⇒ (a - b)² = 33
⇒ a - b = √33
Verification :-
(a - b)²= a² + b² - 2ab
⇒ (√33)² = (41) - 2(4)
⇒ 33 = 41 - 8
⇒ 33 = 33
Therefore a - b = √33
Identity used :-
• (a - b)² = a² + b² - 2ab
Extra Information :-
Some Important Identities :-
• (x + y)² = x² + y² + 2xy
• (x - y)² = x² + y² - 2xy
• (x + y)(x - y) = x² - y²
• (x + a)(x + b) = x² + (a + b)x + ab
• (x + y + z)² = x² + y² + z² + 2xy + 2yz + 2xz
Answered by
0
Answer:
(i)0
(ii)-2
Step-by-step explanation:
(i)a+b=2+(-2)=2-2=0
(ii)a²+ab+b=2²+2(-2)+(-2)=4+(-4)+(-2)
=4-4-2=-2
Hope it helps!
Similar questions
Psychology,
2 months ago
Math,
2 months ago
Physics,
2 months ago
English,
10 months ago
Biology,
10 months ago