4. II SOVU
P, C
U
MIC are on a
3. If a sins + b cosr=cb sinʼy + a cosy = d.
a tanx-b tany, then proven
a²_ (d-a)(c-a)
62 (6-c)(b-d
Answers
Answered by
2
Answer:
9
Step-by-step explanation:
Given :-
→ a sin∅ + b cos∅ = c .......(1) .
Now,
→ ( a sin∅ + b cos∅ )² + ( a cos∅ - b sin∅ )² .
= a²sin²∅ + b²cos²∅ + 2a sin∅ b cos∅ + a²cos²∅ + b²sin²∅ - 2a sin∅ b cos∅ .
= a²sin²∅ + a²cos²∅ + b²cos²∅ + b²sin²∅ .
= a²( sin²∅ + cos²∅ ) + b²( cos²∅ + sin²∅ ) .
= a² + b² . [ ∵ sin²∅ + cos²∅ = 1 ] .
Thus, ( a sin∅ + b cos∅ )² + ( a cos∅ - b sin∅ )² = ( a² + b² ) .
⇒ c² + ( a cos∅ - b sin∅ )² = ( a² + b² ) .
⇒ ( a cos∅ - b sin∅ )² = ( a² + b² - c² ) .
⇒ ( a cos∅ - b sin∅ ) = √( a² + b² - c² ) .
Hence, \sf \pink { (a \: { \cos }^{2} \theta - b \: { \sin }^{2} \theta ) = \sqrt{ {a}^{2} + {b}^{2} - {c}^{2} } }.(acos
2
θ−bsin
2
θ)=
a
2
+b
2
−c
2
.
Similar questions