Math, asked by adityashirke0309, 5 months ago

4) In A ABC, ZABC = 90, point P and Q are midpoints of AB
and BC respectively. Show that AQ2 + CP2 = 4xPQ2

Answers

Answered by nehachauhan93
1

To Prove : △ADE∼△ACB

Proof :

(i) In △ADE and △ACB

(1) ∠A=∠A [common]

(2) ∠AED=∠ABC=90

o

(given)

∴ △ADE∼△ACB [AA axiom]

(ii) (AC)

2

=(AB)

2

+(BC)

2

169=(AB)

2

+25

AB=12cm

∵ △ADE∼△ACB

BC

DE

=

AC

AD

=

AB

AE

BC

DE

=

AB

AE

5

DE

=

12

4

DE=

12

20

=

3

5

=1

3

2

cm

Now,

AC

AD

=

AB

AE

13

AD

=

12

4

AD=

12

13×4

=

3

13

=4

3

1

cm.

(iii)

Ar.of(△ADE)

Ar.of(△ABC)

=

AE

2

AB

2

=

16

144

=

1

9

Ar.of(△ADE)

Ar.of(△ADE)+Ar.of(BCED)

=9

1+

Ar.of(△ADE)

Ar.of(BCED)

=9

Ar.of(BCED)

Ar.of(△ADE)

=

8

1

Answered by myktechnical886
0

Answer

AQ

2

=AB

2

+BQ

2

=AB

2

+(

2

BC

)

2

=AB

2

+

4

BC

2

...(i)

Similarly CP

2

=BC

2

+BP

2

=BC

2

+(

2

AB

)

2

=

4

AB

2

+BC

2

...(ii)

∴AQ

2

+CP

2

=AB

2

(1+

4

1

)+BC

2

(1+

4

1

)

=

4

5

(AB

2

+BC

2

)=

4

5

AC

2

Similar questions