Math, asked by danieltoox, 3 months ago

4
In a parallelogram ABCD, if
angle A = (2x + 15)° and angle B
= (3x - 25)', then the value of x is​

Answers

Answered by 2008shrishti
2

\huge\star{\underline{\mathtt{\red{Q}\pink{U}\green{E}\blue{S}\purple{T}\orange{I}\red{O}\pink{N}}}}\star

In a parallelogram ABCD, if

angle A = (2x + 15)° and angle B

= (3x - 25)', then the value of x is

\huge\star{\underline{\mathtt{\red{A}\pink{N}\green{S}\blue{W}\purple{E}\orange{R}}}}\star

38°

\huge\star{\underline{\mathtt{\red{E}\pink{X}\green{P}\blue{L}\purple{A}\orange{N}\pink{A}\green{T}\blue{I}\purple{O}\orange{N}}}}\star

Given the parallelogram ABCD.

In case of a parallelogram the sum of co-interior angles will be 180°

i.e, ∠A+∠B=180°

⇒2x+15+3x−25°

=180°

∴5x=190°

i.e, x=38°

Hence, the answer is 38°.

\huge\star{\underline{\mathtt{\red{R}\pink{E}\green{M}\blue{A}\purple{R}\orange{K}}}}\star

Hope this answer will help you.✌️

Answered by Tyneemax
1

Answer:

Step-by-step explanation:

Angles which lie on the same side are =

so (2x + 15)+(3x-25) = 180

5x - 10 = 180

5x = 190

x = 190/5

= 38

Similar questions