Math, asked by anilsinha790390, 18 days ago

4. In given quadrilateral ABCD, AB || CD. Find the value of x, y, z and a. А B 3470 33° a D С​

Answers

Answered by tanvishirke264
0

Answer:

angle z = 47

angle y = 33

angle a = 100

angle x = 100

it's explanation in above image

Attachments:
Answered by ambhoreabhishek35
0

Answer:

For Fig.a,

AB∥CD [ Given ]

∴ Quadrilateral ABCD is a trapezium.

CO

AO

=

DO

BO

[ Diagonals of trapezium divides each other proportionally ]

4x−2

4

=

2x+4

x+1

⇒ 4(2x+4)=(x+1)(4x−2)

⇒ 8x+16=4x

2

−2x+4x−2

⇒ 4x

2

−6x−18=0

⇒ 2x

2

−3x−9=0

⇒ (x−3)(2x+3)=0

∴ x=3 or x=

2

−3

(2) For Fig.(b),

AB∥CD [ Given ]

∴ Quadrilateral ABCD is a trapezium.

CO

AO

=

DO

BO

[ Diagonals of trapezium divides each other proportionally ]

5x−3

3x−1

=

6x−5

2x+1

⇒ (3x−1)(6x−5)=(2x+1)(5x−3)

⇒ 18x

2

−15x−6x+5=10x

2

−6x+5x−3

⇒ 8x

2

−20x+8=0

⇒ 2x

2

−5x+2=0

⇒ (x−2)(2x−1)=0

∴ x=2 or x=

2

1

(3) For Fig.(c),

AB∥CD [ Given ]

∴ Quadrilateral ABCD is a trapezium.

CO

AO

=

DO

BO

[ Diagonals of trapezium divides each other proportionally ]

x−3

3x−19

=

4

x−4

⇒ (3x−19)(4)=(x−4)(x−3)

⇒ 12x−76=x

2

−3x−4x+12

⇒ x

2

−19x+88=0

⇒ (x−8)(x−11)=0

∴ x=8 or x=11

Similar questions