Math, asked by pratimayadav1503, 1 year ago

4. In the adjoining figure, PR = 6 units and PO = 8 units. Semicircles are drawn taking sides PR, RQ and PQ
as diameters as shown in the figure. Find out the area of the shaded portion. (it = 3.14)​

Attachments:

Answers

Answered by janardang13125
10

Answer:

I hope it will help you...

Attachments:
Answered by presentmoment
10

Area of the shaded portion = 24 sq. units.

Explanation:

Given data:

PR = 6 units and PQ = 8 units

Two semi-circles are drawn using PQ and PR and RQ is a diameter.

Consider the circle with RQ as a diameter.

Angle formed in the semi-circle is a right angle.

\angle R P Q=90^{\circ}

Hence ΔRPQ is a right angled triangle.

Using Pythagoras theorem, we can find the length of RQ.

Q R^{2}=P R^{2}+P Q^{2}

QR^2=6^{2}+8^{2}

QR^2=100

Taking square root on both sides of the equation.

QR = 10

Radius of the semi-circle RQ = 10 ÷ 2 = 5

Area of the semi-circle RQ = \frac{1}{2} \pi r^2

                                             =\frac{1}{2} \times \pi \times 5^2

                                             =\frac{25}{2} \pi

Radius of the semi-circle PQ = 8 ÷ 2 = 4

Area of semi circle PQ = \frac{1}{2} \pi r^2

                                      =\frac{1}{2} \times \pi \times 4^2

                                      =\frac{16}{2} \pi

                                       =8\pi

Radius of the semi-circle PR = 6 ÷ 2 = 3

Area of semi circle PR = \frac{1}{2} \pi r^2

                                      =\frac{1}{2} \times \pi \times 3^2

                                      =\frac{9}{2} \pi

Area of the triangle PQR = \frac{1}{2}\times PR\times PQ

                                         =\frac{1}{2} \times 6 \times 8

                                         = 24 square units

Area of shaded region = \frac{9 \pi }{2}+8 \pi-\left(\frac{25 \pi}{2}-24\right)

                                      =\frac{9 \pi + 16 \pi}{2}-\left(\frac{25 \pi}{2}-24\right)

                                       =\frac{25\pi}{2}-\frac{25 \pi}{2}+24

                                       = 24 sq. units

Hence area of the shaded portion = 24 sq. units.

To learn more...

https://brainly.in/question/1151193

https://brainly.in/question/2164312

Similar questions