Math, asked by jeure, 10 months ago


4) In the adjoining figure, the center of the
circle O is on the arm of an angle.
Observe the figure and show that: m(angleBAC)= 1/2 m(arcBXC)
(Hint - Join DC)

Answers

Answered by varadad25
6

Answer:

\boxed{\red{\sf\:m\:\angle\:BAC\:=\:\dfrac{1}{2}\:m\:(\:arc\:BXC\:)}}

Step-by-step-explanation:

NOTE: Refer to the attachment for the diagram.

Given:

1) Point O is the centre of the circle.

2) \sf\:\angle\:BAC is inscribed in an arc BAC.

3) \sf\:\angle\:BAC intercepts are BXC of the circle.

To prove:

\sf\:m\:\angle\:BAC\:=\:\dfrac{1}{2}\:m\:(\:arc\:BXC\:)

Construction:

Join OC.

Proof:

We have given that, the point O is on the arm of the angle.

Now,

\sf\:OA\:=\:OC\:\:\:-\:-\:[\:Radii\:of\:same\:circle\:]\\\\\\\therefore\sf\:\triangle\:OAC\:is\:an\:isosceles\:triangle\\\\\\\therefore\sf\:m\:\angle\:OAC\:=\:m\:\angle\:OCA\:\:\:-\:-\:[\:Isosceles\:triangle\:theorem\:]\\\\\\\sf\:Let\:,\\\\\\\sf\:m\:\angle\:OAC\:=\:m\:\angle\:OCA\:=\:x^{\circ}\\\\\\\therefore\sf\:m\:\angle\:BOC\:=\:m\:\angle\:OAC\:+\:m\:\angle\:OCA\:\:\:-\:-\:[\:Remote\:interior\:angles\:]\\\\\\\implies\sf\:m\:\angle\:BOC\:=\:x\:+\:x\\\\\\\implies\sf\:m\:\angle\:BOC\:=\:2x\\\\\\\implies\sf\:m\:\angle\:BOC\:=\:2\:m\:\angle\:BAC\\\\\\\implies\sf\:m\:\angle\:BAC\:=\:\dfrac{1}{2}\:m\:\angle\:BOC\\\\\\\sf\:Now\:,\\\\\\\sf\:m\:\angle\:BOC\:=\:m\:(\:arc\:BXC\:)\:\:\:-\:-\:[\:De finition\:of\:measure\:of\:minor\:arc\:]\\\\\\\implies\boxed{\red{\sf\:m\:\angle\:BAC\:=\:\dfrac{1}{2}\:m\:(\:arc\:BXC\:)}}

Hence proved!

Attachments:
Similar questions