Math, asked by VishalRaykwar, 2 months ago

4 In the mathematics test given to 15 students the following marks (out
of 100) are recorded
41, 39, 48, 52, 46, 62, 54, 40,96; 52, 98, 40, 42, 52, 60
Find the mean median and mode of the data.​

Answers

Answered by sia1234567
21

  \sf\huge{solution}

   \huge\sf \underline\purple{given}

 \bigstar \: \sf \pink{total \: number \: of \: students = 15}

 \bigstar \: \sf \pink{total \: marks \: out \: of \: 100 =} \green{ 41 , 39 , 48, 52 ,46 ,62 ,54 ,40 ,96 ,52 ,98 ,40 ,42 ,52 ,60}

 \huge\sf\underline\purple{find}

 \bigstar \: \sf\pink{mean} \\  \bigstar \: \sf \pink{ median} \\  \bigstar \: \sf \pink{ mode}

 \huge\underline\bold{mean}

  \\  \color{red}as \: we \: know -  \\  \bold{ \star \:  mean =  \frac{sum \: of \: observations}{total \: number \: of \: observations}}

  \bold{\frac { \:  =  \: 41  + 39  + 48 +  52 + 46 + 62 + 54  + 40 + 96 + 52 + 98 + 40 + 42 + 52 + 60} {15}}

 \bold{\frac{822}{15}  = 54.8}

\underline{\fbox{mean = 54.8}}

 \huge\underline\bold{median}

 \red{ \dagger \: arrange \: them \: in \: ascending \: order}

  = \green{ 39 , 40, 40 ,41 ,42 ,46 ,48 ,52 ,52 ,52 ,54,60 ,62 ,96,98}

 \bold{\star \: number \: of \: observations = n = 15(odd)}

 \red{as \: we \: know \: the \: formulae} \\  \star \: \bold{ median =  (\frac{n + 1}{2})^{th} observation}

  \bold{=  (\frac{15 + 1}{2})^{th} observation}

 \bold{ =  {8}^{th} observation}

 \underline{\fbox{median = 52}}

 \huge\underline\bold{mode}

  = \green{ 39 , 40, 40 ,41 ,42 ,46 ,48 ,52 ,52 ,52 ,54,60 ,62 ,96,98}

 \sf\red{here - } \\  \circ \: 39 \: occurs \: 1 \: time \\  \circ \: 40 \: occurs \: 2 \: time \\  \circ \: 41 \: occurs \: 1 \: time \\  \circ \: 42 \: occurs \: 1 \: time \\  \circ \: 46 \: occurs \: 1 \: time \\   \circ \: 48 \: occurs \: 1 \: time  \\  \circ \: 52 \: occurs \: 3 \: time \\  \circ \: 54 \: occurs \: 1 \: time \\  \circ \: 60 \: occurs \: 1 \: time \\  \circ \: 62 \: occurs \: 1 \: time \\  \circ \: 62 \: occurs \: 1 \: time

________________________________

@Sia1234567

Similar questions