Math, asked by itsPs, 1 year ago

4. In what ratio does the point (1, a) divide the
join of (-1, 4) and (4, -1) ?
Also, find the value of a.​

Answers

Answered by BrainlyConqueror0901
34

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Ratio=2:3}}

{\bold{\therefore a=2}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about a line segment in which point P divides the line in ratio.

• We have to find the ratio in which P divides the line and value of a.

 \underline \bold{Given : } \\  \implies  \bold{Let \: AB \: be \: the \: line \: and \: P \: divides \: it} \\  \\  \implies coordinate \: of \: A = ( - 1,4) \\  \\  \implies coordinate \: of \: B = ( 4, - 1) \\  \\ \implies coordinate \: of \: P = ( 1,a) \\  \\  \underline \bold{to \: find : } \\  \implies Value \:of \: a = ? \\  \\  \implies Ratio = ?

• According to given question :

 \bold{Let  \: P\: divides \: in \: \:ratio \:  = k : 1} \\  \\   \bold{By \: section \: formula : } \\  \implies x =  \frac{ mx_{2} +  nx_{1}  }{m + n}  \\  \\  \implies 1 =  \frac{k  \times 4 + 1 \times  - 1}{k + 1}  \\  \\  \implies k + 1  = 4k - 1 \\  \\  \implies k - 4k =  - 1 - 1 \\  \\  \implies   \cancel{-} 3k =   \cancel{-} 2 \\  \\   \bold{\implies k =  \frac{2}{3}}  \\  \\ \bold{ \therefore  Ratio = 2 : 3} \\  \\   \bold{For \: y \: ordinate : } \\  \implies y =  \frac{ my_{2} +  ny_{1}  }{m + n}  \\  \\  \implies a =  \frac{2 \times  - 1 + 3 \times 4}{2 + 3}  \\  \\  \implies 5a =  - 2 + 12 \\  \\  \implies a =  \frac{\cancel{10}}{\cancel5}  \\  \\   \bold{\implies a = 2}

Answered by Anonymous
91

Solution:

Given:

=> A = (-1, 4)

=> B = (4, -1)

=> P = (1, a)

To Find:

=> Ratio

=> Value of a

Formula used:

\sf{\implies \Bigg[\dfrac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}},\;\dfrac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}}\Bigg]\;\;\;\;\;\;(Section\;formula)}

So,

Let p divides in the ratio k : 1. Then,

For x coordinate:

\sf{\implies x = \dfrac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}}}

\sf{\implies 1 = \dfrac{k\times 4+1\times (-1)}{k+1}}

\sf{\implies k+1=4k-1}

\sf{\implies k - 4k = -1-1}

\sf{\implies -3k=-2}

\large{\boxed{\boxed{\sf{\implies k = \frac{3}{2}}}}}

For y coordinate:

\sf{\implies y = \dfrac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}}}

\sf{\implies a = \dfrac{2\times (-1)+3\times 4}{2+3}}

\sf{\implies 5a = 10}

\sf{\implies a = \frac{10}{5}}

\large{\boxed{\boxed{\sf{\implies a = 2}}}}

Similar questions