Math, asked by munnabhaigaming071, 1 month ago

4) lim X=0 2^x-1/✓1+x-1

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given expression is

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 0}  \frac{ {2}^{x} - 1 }{ \sqrt{1 + x}  - 1}}

If we substitute directly x = 0, we get

\rm \:  =  \:  \: \dfrac{ {2}^{0} - 1 }{ \sqrt{1 + 0}  - 1}

\rm \:  =  \:  \: \dfrac{1 - 1}{1 - 1}

\rm \:  =  \:  \: \dfrac{0}{0} \: which \: is \: meaningless

So,

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 0}  \frac{ {2}^{x} - 1 }{ \sqrt{1 + x}  - 1}}

On rationalizing the denominator, we get

\rm \:  =  \:  \: \displaystyle\lim_{x \to 0} \dfrac{ {2}^{x} - 1 }{ \sqrt{1 + x}  - 1}  \times \dfrac{ \sqrt{1 + x}  + 1}{ \sqrt{1 + x}  + 1}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 0} \dfrac{( {2}^{x} - 1 )( \sqrt{1 + x}  + 1)}{ (\sqrt{1 + x}) {}^{2}  -  {1}^{2} }

\red{\bigg \{ \because \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}   \bigg \}}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 0} \dfrac{( {2}^{x}  - 1)( \sqrt{1 + x} + 1)}{1 + x - 1}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 0} ( \sqrt{1 + x} + 1) \times \displaystyle\lim_{x \to 0}  \frac{ {2}^{x}  - 1}{x}

We know,

\boxed{ \rm{ \displaystyle\lim_{x \to 0}  \frac{ {a}^{x}  - 1}{x} = loga}}

\rm \:  =  \:  \: (1 + 1) \times  log(2)

\rm \:  =  \:  \: 2  \: log2

Hence,

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 0}  \frac{ {2}^{x} - 1 }{ \sqrt{1 + x}  - 1} = 2 \: log2}

Additional Information :-

\boxed{ \rm{ \displaystyle\lim_{x \to 0}  \frac{sinx}{x} = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0}  \frac{tanx}{x} = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0}  \frac{log(1 + x)}{x} = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0}  \frac{ {e}^{x}  - 1}{x} = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to a}  \frac{ {x}^{n}  -  {a}^{n} }{x - a} =  {na}^{n - 1}}}

Similar questions