Math, asked by sodhiraajveer, 1 month ago

(4 ^ (n + 1) * 2 ^ n - 8 ^ n)/(2 ^ (3n + 1))

Answers

Answered by shreekrishna35pdv8u8
1

Step-by-step explanation:

\frac{{4}^{n + 1}   \times 2 ^ n - 8 ^ n}{ {2}^{3n + 1} }  \\  = \frac{{2}^{2n + 2}   \times 2 ^ n - {2}^{3n} }{ {2}^{3n + 1} } \\ =   \frac{ {2}^{2n + 2 + n} }{ {2}^{3n + 1} }  -  \frac{ {2}^{3n} }{ {2}^{3n + 1} }  \\  =  {2}^{3n + 2 - 3n - 1}  -  {2}^{3n - 3n - 1}  \\  = 2 -  {2}^{ - 1}  \\  = 2 -  \frac{1}{2}  \\  =  \frac{4 - 1}{2}  \\  =  \frac{3}{2}

Answered by diwanamrmznu
4

★GIVEN:-

  •  =  \frac{4 {}^{n + 1} \times 2 {}^{n} - 8 {}^{n}   }{2 {}^{3n + 1} }  \\

____________________________________

EVALAUTION★

 =  \frac{4 {}^{n + 1} \times 2 {}^{n} - 8 {}^{n}   }{2 {}^{3n + 1} } \\  \\

  • can be this written as
  •  =  \frac{(2 \times 2 ){}^{n + 1} \times 2 {}^{ {}^{n} } -( 2 \times 2 \times 2)   {}^{n}   }{2 {}^{n + 1}   }   \\  \\  =  \frac{2 {}^{n + 1} \times 2 {}^{n + 1} \times 2 {}^{n} - 2 {}^{n} \times 2 {}^{n} \times 2 {}^{n}      }{2 {}^{n + 1} }
  • we know that

  •  \frac{1}{a {}^{m} }  = a {}^{m}
  •  =  > a {}^{m} \times a {}^{n}   = a {}^{m + n}  \\
  •  = 2 {}^{n + l}  \times 2 {}^{ - (n + 1)}  \times 2 {}^{2n + 1}  - 2 {}^{3n} \\  \\ =  2 {}^{n + 1 - n - 1}  \times 2 {}^{2n} \times 2 - 2 {}^{2n}  \times   2 {}^{n}  \\  \\  = 2 {}^{0}  \times 2 {}^{2n}(2 - 2 {}^{n})   \\  \\  = we \: know \\  \\ a {}^{0 }  = 1 \\  \\  = 2 {}^{2n} (2 - 2 {}^{n} )

_____________________

I hope it helps you

Similar questions