Math, asked by amansharma17, 1 year ago

4^n+2-4^n+1/5*4^n-4^n

Answers

Answered by MarkAsBrainliest
13

Answer :

Now,

 \frac{ {4}^{n + 2} -  {4}^{n + 1}  }{5 \times  {4}^{n}  -  {4}^{n} }  \\  \\  =  \frac{ {4}^{n} ( {4}^{2} -  {4}^{1}  )}{ {4}^{n} (5 - 1)}  \\  \\  =  \frac{16 - 4}{4}  \\  \\  =  \frac{12}{4}  \\  \\  =  \bold3

#MarkAsBrainliest

Answered by iHelper
9
Hello!

\dfrac{\sf 4^{n+2} - 4^{n+1}}{\sf 5\: x\: 4^{n} - 4^{n}}

= \dfrac{\sf \cancel{4^{n}}(4^{2} - 4^{1})}{\sf \cancel{4^{n}}(5 - 1)}

= \dfrac{\sf 16 - 4}{\sf 4}

= \dfrac{\sf 12}{\sf 4} = \sf 3

\boxed{\dfrac{\sf 4^{n+2} - 4^{n+1}}{\sf 5 \:x \:4^{n} - 4^{n}} = \sf 3}

Cheers!
Similar questions