Math, asked by rohitmalik987789, 11 months ago

4. Number of divisors of n = 38808 (except 1 and n) is
a 74
b. 70
c. 68
d. 72​

Answers

Answered by mysticd
1

 Given \: number \: n = 38808

 Resolve \: n \: into \: product \:prime.

2 | 38808

________

2 | 19404

________

2 | 9702

________

3 | 4851

________

3 | 1617

________

7 | 539

________

7 | 77

________

**** 11

 n = 388808 = 2^{3} \times 3^{2} \times 7^{2} \times 11^{1}

 \blue {If \: n = p^{a}\times q^{b} \times r^{c} }

 \orange {Where, p,q \: and \: r \: are \: prime \: numbers}

  \pink { Number \: of \: divisors (n)}

 \pink {= (a+1)(b+1)(c+1) }

 Now, Number \: divisors \: of \: n \\= (3+1)(2+1)(2+1)(1+1) \\= 4 \times 3 \times 3 \times 2\\=72

 Number \:of \:divisors ( Except \:1 \:and \: n)\\= 72 - 2 \\= 70

Therefore.,

 Option \: \green { (b) } \:is \: correct.

•••♪

Similar questions