Math, asked by nadiralam, 4 months ago


4. One-fourth of a number is 3 more than one-fifth of its successor. Find the number.

Answers

Answered by EliteZeal
76

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • One-fourth of a number is 3 more than one-fifth of its successor

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • The number

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

  • Let the number be 'z'

 \:\:

  • Then its successor will be 'z + 1'

 \:\:

\underline{ \underline{\bold{\texttt{One fourth of the number :}}}}

 \:\:

 \sf \dfrac { 1 } { 4 } \times z ⚊⚊⚊⚊ ⓵

 \:\:

\underline{ \underline{\bold{\texttt{One fifth of the successor number :}}}}

 \:\:

 \sf \dfrac { 1 } { 5 } \times (z + 1) ⚊⚊⚊⚊ ⓶

 \:\:

Given that , One-fourth of a number is 3 more than one-fifth of its successor

 \:\:

Thus ,

 \:\:

From equation ⓵ & ⓶

 \:\:

: ➜  \sf \dfrac { 1 } { 4 } \times z = \dfrac { 1 } { 5 } (z + 1) + 3

 \:\:

: ➜  \sf \dfrac { z } { 4 } = \dfrac { (z + 1)} { 5 } + 3

 \:\:

: ➜  \sf \dfrac { z } { 4 } = \dfrac { (z + 1 + 15)} { 5 }

 \:\:

: ➜  \sf \dfrac { z } { 4 } = \dfrac { (z + 16)} { 5 }

 \:\:

: ➜ 5z = 4(z + 16)

 \:\:

: ➜ 5z = 4z + 64

 \:\:

: ➜ 5z - 4z = 64

 \:\:

: : ➨ z = 64

 \:\:

  • Hence the number is 64

nadiralam: Thanks your answer is right......
Anonymous: Nice!
Anonymous: Amazing answer!
EliteZeal: Thanks
Similar questions