Math, asked by paras12gg, 1 month ago

(4)...Plot the points A(1,-4), B(-2, 4) and C(4, 1). Name and shade the figure so obtained of joining them in order and also, find its area and perimeter.​

Answers

Answered by MrMonarque
8

Refer The Attachment ⬆️

||GIVEN||

  • A(1,-4) \longmapsto\;\sf{(x_1,y_1)}
  • B(-2,4) \longmapsto\;\sf{(x_2,y_2)}
  • C(4,1) ) \longmapsto\;\sf{(x_3,y_3)}

||TO FIND||

  • Shape Formed by joining A,B & C.
  • Area & Perimeter of the figure formed.

||SOLUTION||

Area of ∆ABC

 \frac{1}{2} |1(4 - 1) + ( - 2)(1 - [ - 4]) + 4( - 4 - 4) |\\  \frac{1}{2} |1(3) - 2(1 + 4) + 4( - 8)| \\  \frac{1}{2} |3 - 10 - 32| \\   \frac{1}{2} |3 - 42| \\  \frac{1}{2}  |- 39| \\  \frac{1}{2}  \times ( 39) \\  19.5

Perimeter of ∆ABC

Length of AB:-

 \sqrt{{ {(1  + 2)}^{2} }  +  {( - 4 - 4)}^{2} } \\  \sqrt{ {(3)}^{2}  +{ ( - 8) }^{2} }  \\  \sqrt{(9 + 64)}  \\  \sqrt{73}  \\ 8.544

Length of BC:-

 \sqrt{ {( 4  +  2)}^{2} +  {(1 - 4)}^{2}  }  \\  \sqrt{ {(6)}^{2} +  {( - 3)}^{2}  }  \\  \sqrt{36 + 9}   \\ \sqrt{45}  \\ 6.708

Length of CA:-

 \sqrt{ {(1 - 4)}^{2}  +  {( - 4 - 1)}^{2} }  \\  \sqrt{ {(3)}^{2} +  {( - 5)}^{2}  }  \\  \sqrt{9 + 25}  \\  \sqrt{34}  \\ 5.831

Perimeter of ∆ABC → AB+BC+CA

8.544 + 6.708 + 5.831 \\ 21.083

Required Area

  • \longmapsto\;\bold{19.5\;sq.units}

Required Perimeter

  • \longmapsto\;\bold{21.083\;units}

Extra Information ℹ️

Semiperimeter: s = 10.542

Angle ∠ A = α = 51.52° = 0.899 rad

Angle ∠ B = β = 42.879° = 0.748 rad

Angle ∠ C = γ = 85.601° = 1.494 rad

Inradius: r = 1.85

Circumradius: R = 4.285

\boxed{\sf{Area\;of\; Triangle = \frac{1}{2}|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|}}

\boxed{\sf{Distance\; between\;two\; points = \sqrt{(x_2-x_1)²+(y_2-y_1)²}}}

\tt{@MrMonarque}

Hope It Helps You ✌️

Attachments:
Similar questions