Math, asked by sujaybs, 7 months ago

4.Prove that the ratios of the areas of two similar triangles is equal to the ratio of the squares of the corresponding sides.



ans???​

Answers

Answered by kalashyam
1

Step-by-step explanation:

for proving theorem we use concept of area of triangle and property of Similarities of triangle

Attachments:
Answered by ADARSHBrainly
8

Question

Prove that the ratios of the areas of two similar triangles is equal to the ratio of the squares of the corresponding sides.

Answer

  \large\color{brown}{ \mathtt{Proof :- }}

Given :-

  • We are given two triangles ABC and PQR such that ΔABC∼ΔPQR.

To prove :-

 \\  \mathtt{ \implies \frac{ar(ABC)}{ar(PQR)}  =  { (\frac{ AB}{PQ }) }^{2}  = { (\frac{  BC}{ QR }) }^{2}  = ({ \frac{ CA}{R P}) }^{2}}

Construction:-

  • Draw altitudes AM & PM of the triangles.

Now ,

 \\  \mathtt{ \implies \: ar (ABC)= \frac{1}{2} BC × AM}

 \\  \mathtt{\implies ar ( PQR) =  \frac{1}{2} QR × PN}</strong></p><p><strong>[tex] \\  \mathtt{\implies ar ( PQR) =  \frac{1}{2} QR × PN}

So,

 \\   \mathtt{  \implies \frac{ar(ABC) }{ar( PQR )}  =  \frac{  \cancel\frac{1}{2} \times \: BC \times AM}{  \cancel{\frac{1}{2}} \times \: QR \times PN}   }.........(1)

 \\  \mathtt{ \implies \frac{ BC \times AM}{  QR \times PN}   }

Now , In ΔABM & ΔPQN,

B = Q. ......( As ΔABC∼ΔPQR)

M = N. ....( Each is of 90°)

So,

ΔABM∼ΔPQN. .....................(AA similarity criterion)

Therefore,

 \\  \mathtt{ \implies \frac{AM }{  PN } =  \frac{ AB }{ PQ}  }............(2)

Also,

ΔABC∼ΔPQR. .......................(Given)

So,

 \\  \mathtt{ \implies \frac{AB}{ PQ } =  \frac{ BC }{QR}  =  \frac{ CA }{RP} } \: ..............(3)

Therefore,

 \\   \mathtt{  \implies \frac{ar(ABC) }{ar( PQR ) }  =   \frac{ AB }{ PQ}  \times \frac{AM }{  PN }.......[ From (1) and (3)]}</p><p>

 \\  \mathtt{ \implies  \frac{AB  } { PQ } \times    \frac{AB  } { PQ }..........[From(2)]}

 \\   \mathtt{\implies { (\frac{AB}{PQ} )}^{2} }

Now, using( 3), we get

 \\  \mathtt{ \implies \frac{ar(ABC)}{ar(PQR)}  =  { (\frac{ AB}{PQ }) }^{2}  = { (\frac{  BC}{ QR }) }^{2}  = ({ \frac{ CA}{R P}) }^{2}}

 \color{orange}{\mathtt{Hence , \:  \: Proved }}

Attachments:
Similar questions